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FOREWORD
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The work was done under the management of the NASA Project Manager, Mr. James
R. Faddoul, Liquid Rocket Technology Branch, NASA-Lewis Research Center.






ABSTRACT

Screening tests conducted on 15 alloys indicated that only two, PH 14-8 Mo
and MP 35 N, developed significantly higher strengths when strained at cyro-
genic temperatures than when strained at room temperature. From additional
testing of PH 14-8 Mo it was determined that this material can be cryostrained
and aged to higher strengths than those achieved through industry standard
treatments. Through combined cryostrain-aging treatments it is possible to
strengthen PH 14~8 Mo to obtain yield strength to density ratios in excess of
1 x 10® inches. Although further study is necessary before a final determina-
tion can be made the indications are that PH 14-8 Mo cryostrained and aged to
above normal strengths will have sufficient toughness and corrosion resistance
to be a useful structural material.
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PROPERTIES OF CRYOGENICALLY
WORKED MATERIALS
FINAL REPORT

By R. G. Herzog, S. H. Osgood and D. Lighty

SUMMARY

During the first year of the two-year program conducted under Contract
NAS3-12028, 15 alloys were selected and tested to determine those for which
cryoworking is a potentially useful sirengthening process. The test materials
were procured in the form of sheet or strip, in the range of 0.050 inch (0.127
ecm) to 0.100 inch (0.254 cm) thick. With the exception of the magnesium alloy
LA 141 A, the test materials were procured in the annealed or solution treated
condition. LA 141 A was procured in the stabilized (~T7) condition and strained
in that condition. Three other alloys, the 2219 and 6061 aluminum alloys, and
the titanium alloy 6A%-4V ELI, although procured in the annealed condition were
strained in the solution treated condition. The materials were cryoworked by
straining them in uniaxial tension while they were immersed in and at thermal
equilibrium with a cryogen (cryostraining).

The materials tested were: aluminum alloys, 2219, 6061, and 5456; beryllium
copper (CDA 172); cobalt alloy, L-605; cobalt-nickel alloy, MP 35 N; magnesium
alloy, LA 141 A; nickel alloys, Inconel 718 and Nickel 440; steel, A-286,

PH 14-8 Mo, 21-6-9, and TRIP steel; and the titanium alloys, 5A%-2.5 Sn ELI,
and 6A%-4V ELI. At the conclusion of the first year's work it was determined
that cryoworking was a potentially useful method of strengthening only two of
the alloys tested: PH 14-8 Mo and MP 35 N.

For another seven alloys cryostraining was found to be a more effective
method of strengthening than room temperature straining. These alloys have a
higher uniform strain capability at cryogenic temperatures than at room tem-
perature. Consequently, they can be strained and worked more at cryogenic tem-
peratures than at room temperature, thus developing higher strengths through
cryostraining. However, the magnitude of the strength increase that is possible
by working these alloys at cryogenic temperatures is proportionally so small
an increase with respect to strengths developed through room temperature work-
ing that cryostraining does not merit consideration as a practical method of
strengthening them. The seven alloys in this category are: 6061, 5456, Inconel
718, Nickel 440, beryllium copper, A-286, and 21-6-9. ‘

For the other alloys tested it was found that cryostraining has no advantage
over room temperature straining with respect to developing higher strengths.

The first phase of the second year's work consisted of a continuation of
the screening tests begun during the first year. However, only three alloys,
all semiaustenitic precipitation hardening stainless steels; PH 14-8 Mo, PH 15-7
Mo, and 17-7 PH were tested. The purpose of these tests was to determine, on the



basis of comparative respomse to cryoworking, the alloy to make the subject of
more detaliled study during the remainder of the program. PH 14-8 Mo was ul-
timately selected for this purpose.

From the results of tests conducted during the second year of the program
it was concluded that cryostraining is an effective method for strengthening
each of the three alloys tested. All three steels can be cryostrained and
aged to develop tensile strengths above 300 000 psi (206 900 N/cm?). None of
the steels evidenced significant anisotropy. PH 15-7 Mo developed higher
strength per unit of strain than the other alloys; however, test results also
indicated that PH 15-7 Mo was not as tough as the others after comparable cryo-
straining.

PH 14-8 Mo was selected for additional testing and study because it devel-
oped higher strengths per unit of strain than 17-7 PH, was found to have higher
postweld strain capability than 17-7 PH or PH 15-7 Mo, and, although no specific
tests were conducted, there were indications that PH 14-8 Mo was somewhat
tougher than the other two steels after cryostraining and aging.

Conclusions drawn from the results of tests conducted on PH 14-8 Mo are:

1) Cryostrained PH 14-8 Mo can be aged to maximum strength per strain
level at temperatures from 800°F (700°K) to 950°F (783°K). Aging
times must, however, be adjusted to compensate for differences in
aging temperatures: as aging temperature increases the time at
temperature to achieve maximum strength decreases.

2) The toughness of cryostrained PH 14-8 Mo is slightly better, at
equal strengths, after aging at 950°F (783°K) than after aging at
900°F (756°K) or at 800°F (700°K).

3) Cryostrained and aged, room temperature strained and aged, or an-
nealed PH 14-8 Mo are more resistant to corrosion by an aqueous
3.5 NaC¢ solution than PH 14-8 Mo SRH 950 or PH 14-8 Mo SRH 1050.

4) The tensile properties of PH 14-8 Mo developed by cryostraining
are relatively insensitive to strain rate. '

5) Due to the Bauschinger effect, the compression yield strength of
cryostrained (in temsion) and unaged PH 14-8 Mo is much lower than
its tensile yield strength.

6) Aging, even for short periods of time at 800°F (700°K), provides
sufficient stress relief so that the Bauschinger effect is elim-
inated and compression yield strengths equal to or slightly exceed-
ing the tensile yield strengths of comparably conditioned PH 14-8
Mo are achieved. ’

7) The data indicate that PH 14-8 Mo cryostrained and aged to above
normal strengths will retain sufficient toughness and corrosion
resistance to serve as a structural material. More comprehensive
study 1s required, however, before a final determination can be
made.



I. INTRODUCTION

Pure metals and many common structural metallic alloys, for example, the
300 series austenitic stainless steels and the non-heat-treatable aluminum
alloys, cannot be strengthened by thermal treatment, but they do develop higher
strengths through cold working. Cold working is the plastic deformation of a
metal or metallic alloy at a temperature below its recrystallization tempera-
ture (Ref. 1). Metals and alloys are generally cold worked at temperatures
above room temperature. In recent years, however, the working of metallic al-
loys at temperatures below room temperature has attracted sufficient interest
and study so that some processes have been developed for working materials at
cryogenic temperatures. For example, Arde Inc., has developed and patented the
Ardeform Process (Ref. 2), a method of producing high-performance pressure ves-
sels by cryogenic stretch forming. The process involves the controlled plastic
deformation at -320°F (78°K) of pressure vessels made from 301 stainless steel
(Ref. 3). Also, the Foster Wheeler Corp., has been awarded a patent (Ref. 4)
for a unique method of forming pressure vessels from 301 stainless steel. This
method includes a technique for explosively forming the 301 steel at -320°F
(78°K). ‘

The Ardeform Process and the Foster Wheeler methods exploit the austenite-
to-martensite transformation that can be induced in metastable 301 stainless
steel by plastically working the material at -320°F (78°K). At this tempera-
ture the transformation is strain-induced and strain~dependent, that is, the
amount of martensite formed increases as strain is increased (Ref. 3). The
301 is hardened and strengthened by the transformation, with the increase in
these properties dependent upon the final martensite~to-austenite ratio (Ref.
3). The forming methods developed by Arde and Foster Wheeler then are proc-—
esses for strengthening metastable 301 stainless steel by straining the ma-
terial at -320°F (78°K) to induce the austenite to martensite transformation.

Mangonon and Thomas (Ref. 5 and 6) report on transformations induced in
304 stainless steel by straining it at cryogenic temperatures, and the addi-
tional effects produced by subsequent thermal treatments. It is reported
that by appropriate mechanical-thermal treatments, room temperature tensile
yield strengths of 200 000 psi (137 900 N/cm?) and greater, and elongations of
up to 10 percent, are developed. The developed properties are shown to be relat-
ed to the percentage of martensite in the mechanical~thermally treated structure.

The behavior of materials at cryogenic temperatures has been, and continues
to be, the subject of many investigations (Ref. 7). The working of materials
at cryogenic temperatures (cryoworking or cryostraining), has not been as
extensively investigated, however. This program was conducted to determine
how the room-temperature tensile properties of selected metallic alloys are
affected by cryoworking. The two-year program was divided into two one-year
segments. During the first year a screening program was conducted to test 15
selected metallic alloys. The purpose of the screening program was to identify
the alloys that were most significantly affected, that is, strengthened by
cryoworking. Data developed during the first year were used to select three
alloys for the screening tests conducted during the first technical task of the



second year. One of the alloys was then subjected to more detailed study dur-
ing the remainder of the program. The objective of the program was to find at
least one alloy that can be cryoworked to significantly increase its tensile
strength without suffering too severe a degradation of ductility, toughness,
and corrosion resistance.

The Technical Task outline of the entire program is:

Task I - Materials Selection;

Task II - Preparation of Baseline and Cryosoaked Specimens;

Task III -  Preparation of Cryoworked Specimens;

Task IV - Room Temperature Testing;

Task V - Evaluation of Results;

Task VI - Selection of a Promising Alloy;

Task VII -  Thermal Response Tests;

Task VIII - Toughness, Stress Corrosion, High Energy Rate Straining
Tests, and Compression Tests;

Task IX - "Analysis.

The first year's program consisted of Tasks I through V. The results of
these Tasks are compiled in the Contract Interim Report, (Ref. 8). Tasks VI
through IX were conducted during the second year.



II. SYNOPSIS OF THE INTERIM REPORT

The results of the testing performed during the first year of the program
are contained in an interim report, CR-72638. This chapter contains a summary
of that report and an outline of the second year's program.

The work accomplished during the first year of the program was divided into
five technical tasks, namely:

Task 1 - Materials Selection;

Task I1 - Preparation of Baseline and Cryosoaked Specimens;
Task IIT -  Preparation of Cryoworked Specimens;

Task IV - Room Temperature Testing;

Task V - Evaluation of Results.

TASK I - MATERIAL SELECTION

The objective of the program was to find a metallic alloy that is appre-
ciably strengthened by cryostraining, yet retains sufficient ductility, tough-
ness, and corrosion resistance so that its utility as a structural material is
not lost. To achieve this objective it was necessary to select and test ma-
terials with a high potential for use in critical structural applications,
particularly aerospace structures and airborne pressure vessels. Consequently,
in selecting materials for testing in Tasks II, III, and IV, priority was given
to structural materials, particularly those suitable for high performance air-
borne tankage. Other factors considered were:

1) Contract requirements - to select and test a minimum of fifteen
alloys, with no more than five alloys from any one base metal sys-
tem;

2) A material's properties and characteristics, specifically:
a) Crystal Structure,
b) Strain Hardening Characteristics,
¢) Thermal Hardening Characteristics,
d) Phase Transformations,
e) Properties at Cryogenic Temperatures, Particularly Ductility,
f) Weldability,
g) Formability,
h) Availability in Sheet or Strip Form.



After a review of data collected from three literature searches (National
Aeronautics and Space Administration, Department of Defense, and the National
Bureau of Standards), and consultation with authoritative personnel in the
metal-producing and metal-working industries, the following alloys were selected
and tested:

Aluminum Alloys - 2219, 5456, and 6061,

Cobalt Alloy - L-605,

Cobalt-Nickel Alloy -~ MP 35 N,

Copper Alloy > - Beryllium Copper,

Magnesium Alloy ~ LA 141 A,

Nickel Alloys -  Inconel 718, Nickel 440,

Steels -  A-286, PH 14-8 Mo, TRIP, 21-6-9,
Titanium Alloys - Ti-6A%-4V ELI, Ti-5A%-2.5Sn ELI.

Not all of these alloys are entirely consistent with the premise of select-
ing materials with a high potential for structural applications. However, the
requirement to select 15 alloys, with no more than 5 from any one alloy system,
provided the opportunity to include several alloys on the basis of academic
interest, rather than for structural potential.

TASKS II, III, AND IV

Tasks II, III, and IV were conducted as consecutive tasks; in Tasks II and
ITIT specimens were prepared for the tests conducted in Task IV. The objective
of the combined Tasks was to determine those alloys among the 15 tested, for
which cryostraining is a potentially practical strengthening process. The plan
developed to achieve this objective was based on the following factors:

1. The test materials would be procured in the form of sheet or strip,
as appropriate for each alloy;

2. The test materials would be strained in the annealed, solution-an-
nealed, or solution-treated condition, as appropriate for each al-
loy. Consequently, all the materials would be procured in one of
these conditions and strained in that condition, with the exception
of the magnesium-lithium alloy, LA 141 A, the aluminum alloys, 2219
and 6061, and the titanium alloy, Ti-6A%-4V ELI. The last three
would be precured in the annealed condition and then be solu-
tion-heat-treated before straining. LA 141 A, would be procured
and strained in the -T7 (stabilized) condition;

3. The materials would be strained in uniaxial tension, using standard
tensile test machines and standard tensile test specimens (consist-
ent with ASTM E8-69 specifications).



4, A strain rate of 0.050 inch per inch per minute (0.050 cm/cm/min)
would be used in straining all specimens.

5. Specimens of each alloy would be strained at room temperature,
~110°F (198°K), -320°F (78°K), and -423°F (20°K).

6. At each temperature some specimens of each alloy would be given a
low strain, some an intermediate strain, and some a high strain.
The low, intermediate, and high strains would be designated as
strain levels A, B, and C, respectively. The strain levels would
vary with alloy and also with temperature, being dependent and pro-
portional to an alloy's capability to strain uniformly at a temper-
ature.

7. Some specimens of each alloy would only be exposed to (soaked at)
the cryogenic temperatures. These cryosoaked specimens would be
identified as: 0% strained at -~ (the appropriate temperature).

8. Some specimens of each alloy, baseline specimens, would be identi-
fied by the self-explanatory description: 0% strained at room tem-
perature.

9. For the heat-treatable alloys one-half of each lot of baseline,
cryosoaked, and cryostrained specimens would be given industry
standard aging treatments; the remaining specimens of each lot
would remain unaged.

10. Specimens prepared as described in items 2 through 9 would be ten-—
sile tested at room temperature to obtain ultimate tensile strength,
tensile yield strength (0.27% offset), and percent elongation in 2
inches.

The screening program was divided into three separate, yet related technical
tasks: Task II, Task III and Task IV. During Task II, the baseline and cryo-
soaked specimens were prepared. Also, preliminary testing was conducted to de-
termine each alloy's capability for uniform straining at each of the four tem-
peratures. The cryoworked (cryostrained) specimens were prepared during Task
I1I, while the room temperature testing of baseline, cryosoaked, and cryostrained
specimens was accomplished during Task IV.

More detailed descriptions of the work accomplished during each of the three
tasks follows.

TASK II - PREPARATION OF BASELINE AND CRYOSOAKED SPECIMENS

Specimen Production

With the exception of the specimens strained at -423°F (20°K), specimens
used in Tasks II and IIIL were the flat friction-loaded type shown in Figure 1.
Pin-loaded specimens of the type shown in Figure 2 were used for straining at
-423°F (20°K).
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In regard to making the specimens, the procedure followed was to first
apply, by photographic process, a 0.100 in. (0.254 cm) square grid pattern
(Fig. 3) to one side of the sheet or strip material. The sheet or strip was
then sheared into blanks for machining: t x 7/8 in. (2.22 cm) wide x 8 in.
(20.32 cm) long for the friction-loaded specimens; t x 1-5/8 in. (4.13 cm) wide
x 8 in. (20.32 cm) long for the pin-loaded specimens.  The blanks were then
machined to specimen configuration in packs of 20 pieces minimum, depending upon
material thickness. For all the specimens used in Tasks II, III and IV the
longitudinal grain direction of the material was parallel to the longitudinal
axis of the specimen.

Uniform Strain Capability (USC) Determination

During Task II, a preliminary and yet vital set of tests was conducted. The
purpose of these tests was to determine each alloy's capability to strain uni-
formly at each of the four straining temperatures. To obtain these data a mini-
mum of two specimens of each alloy were tension tested to-failure at each
temperature. For all alloys, these tension test specimens were tested in the
condition (e.g., annealed) in which other specimens of the alloy were subsequent-
1y cryosoaked or cryostrained. The properties measured in these tests were:
ultimate tensile strength; total elongation over a gage length of two inches;
and uniform elongation over a one-inch gage length. When practical, tensile
yvield strength was also measured. Total elongation was measured across the
fracture (Figure 4), while uniform elongation was measured over a one-inch gage
in an area or one side of the fracture. Care was taken to measure uniform elon-
gation only over a portion of each specimen's initial gage section that was unaf-
fected by localizéd strain (necking) or by transition radius (Figure 4). Elon-
gations were measured with a 6-inch rule having 0.010 inch graduations, and a
10X magnifying glass. The lines of the grid pattern served as strain measure-
ment datum lines. The average value of the uniform elongations measured on
specimens of an alloy tested to failure at a particular temperature was estab-
lished as an alloy's uniform strain capability (USC) at that temperature. A
USC was established for each alloy at each straining temperature.

Establishment of Strain Levels

The strain levels that were established for each alloy at each straining
temperature were based on the USCs as follows:

Level A ~ 40% of an alloy's USC at that temperature at which the alloy
had the least USC,

Level B - 60% of an alloy's USC at the stréining.temperature,
‘Level C - 80% of an alloy's USC at the straining temperature.

Thus for any alloy, Level A was the same value at all straining temperatures,
while the values of Levels B and C varied with temperature.



Figure 3. ~Specimens Used in Task II and Task III with the 0.100-inch
(0.254-cm) Square Photogrid Pattern on the Surfaces.
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Total Elongation

Uniform Elongation

Figure 4. Measurement of Total and Uniform Elongations

Preparation of Baseline and Cryosoaked Specimens

During Task II, the baseline specimens and the cryosoaked specimens were
prepared for testing in Task IV. Eleven of fifteen alloys were procured in the
annealed or solution annealed condition and were strained and cryosoaked in the
same condition. The four exceptions were: (1) the,magnesium-lithium alloy,

LA 141 A, which was procured and used in the -T7 (stabilized) condition; (2)
aluminum alloy 2219 and (3) aluminum, alloy 6061, which were procured in the
annealed condition, but were solution-treated and then refrigerated to retard
natural aging (specimens of these alloys were drawn from the refrigerator and,
when necessary, brought up to room temperature just before they were cryosoaked,
strained, or tested for baseline properties); and (4) alloy Ti-6A%-4V ELI,

which was procured in the annealed condition and then solution-treated to condi-
tiop it for cryosoaking and straining.

11



Baseline Specimens

For non-heat-treatable alloys, the preparation of baseline specimens merely
involved the selection and identification of five friction~loaded specimens for
alloy. These were then stored and subsequently tested in Task IV. For each
heat treatable alloy, ten specimens were selected and identified. Five of the
ten specimens were then given an industry standard aging treatment, after which
the ten specimens were stored until tested in Task IV.

During Tasks II, III, and IV, all of the aging treatments selected for the
heat treatable alloys were industry standard treatments. Strain hardening ac-
celerates the response of many of the alloys to aging treatments; consequently,
when necessary, the aging treatment given unstrained specimens was different
from that given strained specimens. Also, for several alloys, two aging treat-
ments were used for strained specimens: (1) a treatment appropriate for highly
strained materials, and (2) a treatment more suitable for lesser strained ma-
terials. When two aging treatments were used, one was selected as the primary
treatment and the majority of the strained specimens were given that treatment.

Cryosoaked Specimens

Cryosoaked specimens were included in the program to determine whether or
not the room temperature tensile properties of any of the alloys were affected
by short term exposure to any of the cryogenic straining temperatures. It was
necessary to develop these data because during the cryostraining operations
there would be a delay from the time a specimen first came in contact with a
cryogen until actual straining of the specimen could begin. For the straining
at -110°F (194°K), and at -320°F (78°K) open end cryostats would be used. For
this equipment a five minute delay period was anticipated from immersion of a
specimen and load linkage until straining could be started. In actual practice,
the five minute delay proved to be adequate. It was also a sufficient period
for the specimen and bath to reach thermal equilibrium (less than two minutes).
For straining at -423°F (20°K), with LH, as the cryogen, the use of a closed
remotely controlled and operated system was necessary to meet rigid safety
standards. With this system a 30 minute delay was anticipated from the time
a specimen first contacted the LH, until straining could be started.

Therefore, based on the anticipated delay periods, the following soak times
were established and used in preparing cryosoaked specimens:

1) At -100°F (194°K) and at ~320°F (78°K), a soak period of 5 minutes
was used; '

2) At -423°F (20°K), a soak period of 30 minutes was used.

12



For non-heat~treatable alloys, cryosoaked specimens were prepared by immers-
ing five friction loaded specimens of an alloy in the appropriate cryogen for
the necessary period of time. The cryogens were: -110°F (194°K), a mixture of
isopropyl alcohol and dry ice; -320°F (78°K), liquid nitrogen; -423°F (20°K),
liquid hydrogen. Therefore, for each non-heat treatable alloy, fifteen cryo-
soaked specimens were prepared: five soaked at -110°F (194°K); five soaked at
-320°F (78°K); and five soaked at -423°F (20°K). For each heat-treatable
alloy, thirty cryosoaked specimens were prepared, ten soaked at each of the
three temperatures. Five of each set of ten soaked specimens were aged after
soaking.

All cryosoaked specimens (including those that were aged) were stored until
tested during Task IV.

TASK III - PREPARATION OF CRYOSTRAINED SPECIMENS

Straining Schedule

Specimens of each alloy were prepared and strained according to the basic
straining schedule, shown in Table 1. These specimens were tested in Task IV.

Table 1 - Task III Straining Schedule

Quantity of Specimens Strained Per Alloy
Strain Level A Strain Level B Strain Level C
Straining Heat Nonheat Heat Nonheat | Heat Nonheat
Temperature |Treatable | Treatable | Treatable| Treatable|Treatable | Treatable
Alloy Alloy Alloy Alloy Alloy Alloy
Room Temp 10 5 10 5 10 5
-110°F (194°K) 10 5 10 5 10 5
-320°F (78°K) 10 5 10 5 10 5
-423°F (20°K) 10 5 10 5 10 5

Straining Procedures

For straining at room temperature, -110°F (194°K), and -320°F (78°K), fric-
tion-loaded specimens (Figure 1) were used and strained on one of two tensile
machines: a 5000 1b (22 200N) capacity machine, or a 50 000 1b (222 400N) capac-
ity machine. At -423°F (20°K) a 50 000 1b (222 400N) machine and pin-loaded
specimens (Fig. 2) were used. All materials were strained at a rate of 0.050
in./in./min (0.050 cm/cm/min), except 6AL—4V ELI titanium, which was strained
at a rate of 0.005 in./in./min (0.005 cm/cm/min).
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Room Temperature Straining

When specimens were strained at room temperature, strain was measured di-~
rectly by holding a 4 in. long scale (0.010 in. divisions) against the gridded
surface of a specimen as it was being strained. Strain was measured over a
gage of 2 in. (5.08 cm) initial length. After a specimen had been strained
and removed from the tensile machine the actual amount of strain was measured
and recorded. Strain was measured over a gage of 2 in. (5.08 cm) initial
length, using the grid marks, a 6 in. scale (0.010 in. divisions) and a 10X
magnifying glass.

Cryostraining

Straining at -110°F (194°K) and at —-320°F (78°K) was done on the same ten-—
sile machines that were used to strain specimens at room temperature. Open top
cyostats and linkage systems (Figure 5) were also required. For -110°F (194°K)
the cryogen was a mixture of dry ice and isopropyl alcohol, for -320°F (78°K)
LN, was used. Whenever a setup was made for straining at either -110°F (194°K)
or —-320°F (78°K), the procedure included cooling the specimen grips to bath tem-
perature by immersing them in the bath. When the grips had cooled and a specimer
" had been loaded into them, the whole assembly was connected to the cryostat and
tensile machine. The level of the cryogen in the cryostat was controlled so
that the upper grip was always completely immersed. A specimen was never
strained until it had been in the bath for at least 5 minutes. The 5 minute
delay from immersion to straining was sufficient as determined by experimenta-
tion, to assure that thermal equilibrium between specimen and bath had been
achieved. A dial indicator was used to measure platen travel, which had been
correlated to strain through experimentation. After a specimen was strained at
-110°F (194°K) or —-320°F (78°K) it was warmed to room temperature and the actual
strain was measured and recorded the same as it had been on room temperature
strained specimens.

Straining at -423°F (20°K) was done in LH,. To meet rigid safety require-
ments, 1t was necessary to use equipment at the Liquid Hydrogen Laboratory.
This equipment included a remotely operated 50 000 1b (222 400N) capacity
tensile machine, a closed cryostat, and a remotely operated closed system for
filling, draining and purging the cryostat. Each strain cycle consisted of:
loading specimens into the load linkage connected to the empty and purged cryo-
stat; closing the system; filling the cryostat with LH,; straining (platen
travel was measured); draining and purging the cryostat; and removing the speci-
mens. Because of the complexity of this cycle, pin-loaded specimens were used.
‘Their use permitted more than one specimen to be strained at a time. Usually
five specimens were strained simultaneously, but the exact quantity was depend-
ent on the strength of the material and the 50 000 1b (222 400N) capacity of
the tensile machine. After being strained, specimens were warmed to room tem-
perature and the actual strain was measured and recorded as it had been for
room—-temperature strained specimens.

14



Aging

As with the cryosoaked and baseline specimens, for the heat-treatable alloys,
five of each set of ten room-temperature strained or cryostrained specimens were
aged after straining.

Figure 5. - Cryostat'and Linkage Systems Used for Stréihing at
-1100F (194°K) and -3200F (789K).
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TASK IV - ROOM TEMPERATURE TENSILE TESTS

During Task IV, the specimens prepared in Tasks II and III were subjected
to standard room temperature tensile tests, conducted in accordance with the
requirements of ASTM E8-69. As previously discussed, for heat treatable alloys
one-half of each set of soaked or strained specimens were given an appropriate
aging treatment before they were tested. The other half of each set were tested .
in the as-strained or as-soaked condition, as were the specimens of the nonheat
treatable alloys. "

The specimens were tested at room temperature on either a 5000 1b (22 200N)
capacity, or a 50 000 1b (222 400N) capacity tensile machine, depending on the
strength of the material. A load-strain curve was autographically recorded for
each test. For this purpose, an extensometer with a 2-in. (5.08 cm) gage together
with appropriate strain-magnifying and plotting devices were used. The proper-
ties determined from each test were: wultimate tensile strength; tensile yield
strength, 0.2% offset; and total elongation, percent in 2 in. (5.08 cm).

TASK V - EVALUATION

Analysis of the results of Tasks I through IV led to the following conclu-
sions:

1. Cryostraining was found to be a more effective strengthening treat-
ment than room temperature straining for only two of the 15 alloys
studied. The two alloys are: PH 14-8 Mo, a precipitation hard-
ening semi-austenitic stainless steel, and MP 35 N, a cobalt-nickel
multiphase alloy. Both of these alloys are strengthened by phase
transformation. PH 14-8 Mo in Condition A (solution treated) has
an austenitic structure. The austenite can be transformed to mar-
tensite either by thermal treatment or by cold working. The struc-
ture of annealed MP 35 N is face-centered cubic. When it is
strained, platelets of a close-packed hexagonal phase form within
the original structure. The test results indicated that compared
with room temperature straining effects, straining at cryogenic
temperatures enhanced the strain induced phase transformation of
each alloy.
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2. Seven other alloys, 6061 aluminum, 5456 aluminum, Inconel 718,
Nickel 440, Beryllium Copper, A-286, and 21-6-9 can be strained
greater amounts when the straining 1s done at cryogenic tempera-
tures rather than at room temperature. Because of additional
strain capability at the cryogenic temperatures, these alloys can
be strain hardened to higher strengths at those temperatures than
at room temperature. However, the magnitude of the strength in-
crease that can be achieved by straining these alloys at cryogenic
temperatures is so small (proportionally) that cryo-straining does

not merit serious consideration as a practical method of strengthen-
ing them.

3. For the other five alloys cryostraining is not beneficial.

The results of the tests conducted on all the alloys are in the Interim Re-
port, Ref. 8. However, for convenience, data obtained from testing the two re-
sponsive alloys, PH 14-8 Mo and MP 35 N, are summarized here.

PH 14-8 Mo

PH 14-8 Mo is a semi-austenitic precipitation hardening steel. In the solu-
tion treated (Condition A) condition, the structure of this steel is austenitic.
Transformation of austenite to martensite can be accomplished in either of two
ways, by thermal treatment or by cold working.

The thermal transformation treatment for PH 14-8 Mo requires the material
be heated to and held at 1700°F (lZOOOK) for 1 hour to condition it for trans-
formation. Then it must be cooled to —-100°F (200°K) and held at that tempera-
ture for 8 hours to transform the austenite to -martensite. An aging treatment,
at either 950°F (782°K) or 1050°F (840°K) follows the transformation treatment.
The conditions after aging are identified as SRH 950 and SRH 1050, respectively.

The cold-work treatment is normally a mill treatment. PH 14-8 Mo Condition
A material is transformed to martensite by heavy cold reduction. It is then
aged at 9009F (755°K) for 1 hour. The condition after aging is designated as
CH 900. TFor this program a CH type treatment was used because the material
could be strained in the highly workable austenitic condition, Condition A,
and then aged.

The test stock obtained for use in Tasks II through IV was a sheet 0.070 x
36 x 120 inches (0.178 x 91 x 305 cm), Condition A, procured to North American
Aviation Materials Specification MB0160-015. The chemical composition of this
sheet is given in the following table:

Element Percent by Weight Element Percent by Weight
C 0.038 Ni 8.31
Mn 0.10 Mo 2.15
P 0.003 Ag 1.17
S 0.004 N 0.005
Si 0.10 Fe Balance
Cr 14,95
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The density of PH 14-8 Mo is 0.283 1lb/cu in. (7.325 gm/cc). 1Its typlcal
mechanical properties are shown in the following tabulation:

Ultimate Tensile Yield Elongation,
Condition (vacuum Tensile Strength, 0.2% % in 2 1in.
induction melted) Strength Offset (5.08 cm)
psi N/cm? psi N/cm?
A 125 000 86 000 55 000 38 000 25.0
SRH 950 230 000 | 156 000 | 215 000 | 148 000 6.0
CH 900 280 000 | 193 000 | 270 000 | 186 000 1.5

The results of the tests conducted on PH 14-8 Mo during Tasks II through
IV are listed in Tables 2 and 3 and summarized in Figures 6 through 11.

The test results indicate that straining at cryogenic temperatures enhances
the austenite to martensite transformation in PH 14~8 Mo and possibly increases
the aging response. Cryostraining is a process by which the room temperature
tensile strength of PH 14-8 Mo can be increased. However, although the tough-
ness of this alloy decreases as its strength increases, it is reasonable to
anticipate that cryostraining procedures can be developed for the alloy to
achieve a satisfactory compromise of strength and toughness. That is, the ma-
terial's strength will be satisfactorily increased but its toughness will not be
so seriously degraded that it cannot be used in structural applications.

MP 35 N

MP 35 is a cobalt-nickel multiphase alloy combining high strength with
good ductility, toughness, and excellent corrosion resistance. It is a strain-
hardening alloy that is additionally strengthened by poststrain aging. It has
a face-centered cubic matrix of cobalt and nickel in which the alloying elements
chromium and molybdenum are soluble at elevated temperatures. The face-centered
cubic structure is retained when the material cools to room temperature. A local
shear transformation is induced, however, when MP 35 N is worked at temperatures
below the equilibrium transformation temperature, approximately 850°F (728°K).
Small platelets of a hexagonal close packed structure form locally within the
face centered cubic matrix. Unlike the martensite transformation that occurs
in many steels, this transformation does not appear to have an MS temperature

at which it occurs spontaneously on cooling. The percentage of the original
structure that is transformed to the hexagonal close packed phase is strain
dependent, and the transformed product is stable.
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The density of MP 35 N is 0.304 1b/cu in. (8.41 gm/cc). Its typical me-
chanical properties are shown in the following tabulation:

Ultimate tensile Tensile yield strength,
I strength 0.2% offset Elongation % in
Condition : > . > 2 in. (5.08 cm)
psi N/cm psi N/cm

Annealed 132 000 91 000 53 000 37 000 68.0
Work-
strengthened
and aged 300 000 | 207 000 290 000 200 000 9.0

For testing in Tasks II through IV, a sheet of annealed MP 35 N, 0.060 x
30 x 48 in. (0.152 x 76 x 122 cm), of the composition given in the following
tabulation was procured to commercial requirements:

Element Percent by Weight
Ni 33.5
Co 38.9
Cr 18.6
Mo 7.2
Other 1.8

Because of the comparatively small size of the MP 35 N sheet available for
the program, it was necessary to strain less than the usual amount of specimens
at each temperature. Normally, for a heat-treatable alloy, 40 specimens were
conditioned at each temperature, for MP 35 N this number was reduced to 30.

The results of the tests conducted on the MP 35 N material are given in
Tables 4 and 5 and summarized in Figures 12 through 17. As the data show,
cryostraining is a more effective means of strengthening MP 35 N than is room-

temperature straining. However, high strains, regardless of the straining tem-
perature, severely reduce the elongation of the MP 35 N, and it is likely that
its toughness is proportionally degraded.

SUMMARY

In summary, the results of the testing conducted in Task IV indicated that
only PH 14-8 Mo and MP 35 N developed sufficiently higher room-temperature ten-—
sile strengths through cryostraining than through room—temperature straining
to merit consideration as candidate materials for further testing in Task VI.
It was initially planned to test both alloys during Task VI; however, MP 35 N
was reluctantly dropped from the program when it was found that the required
quantity of sheet could not be obtained in time to meet program schedule re-
quirements.
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Figure 6.- Ultimate Tensile Strength of Prestrained PH 14-8 Mo Steel
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Tensile yield strength, 0.2% offset,
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Tensile yield strength, 0.2% offset,
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Figure 12.- Ultimate Tensile Strength of Prestrained MP 35 N
Cobalt-Nickel Alloy
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Figure 13.- Ultimate Tensile Strength of Prestrained MP 35 N Cobalt-
Nickel Alloy, Aged 4 hr at 900°F (756°K)
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Tensile yield strength, 0.2% offset,
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Figure 14.- Tensile Yield Strength of Prestrajned MP 35 N Cobalt-
Nickel Alloy



Tensile yield strength, 0.2% offset,
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Figure 15.- Tensile Yield Strength of Prestrained MP 35 N Cobalt-
Nickel Alloy, Aged 4 hr at 900°F (756°K)
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Figure 16.- Total Elongation of Prestrained MP 35 N Cobalt-
Nickel Alloy
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Figure 17.- Total Elongation of Prestrained MP 35 N Cobalt-
Nickel Alloy, Aged 4 hr at 900°F (756°K)
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THE SECOND YEAR'S PROGRAM

Before Task IV testing was completed and the results analyzed, it had been
planned that nine alloys would be tested in Task VI, three from each of three
alloy systems. These alloys were to have been chosen primarily on the basis
of the Task IV test results. It was intended that only alloys with a high pro-
bability of being appreciably strengthened by cryostraining would be studied
in Task VI. However, when the Task IV test results were analyzed and it was
found that only two alloys were legitimate candidates for further study, the
program had to be modified accordingly.

The second year's program was conducted according to the following plan.

1. The testing portion of the program was divided Into three tasks:

Task VI ~ Selection of a Promising Alloy; -
Task VII - Thermal Response Tests;
Task VIII - Toughness, Stress Corrosion, High Energy Rate Strain-

ing Tests, and Compression Tests.
2. Two additional tasks:
Task IX -~ Analysis;
Task X - Reporting;
completed the program.

3. Three alloys were tested in Task VI, all semi-austenitic precipi-
tation hardening corrosion resistant steels: PH 14~8 Mo; PH 15-7
Mo; and 17-7 PH.

4, Cryostraining was done at one temperature, -320°F (78°K).

A report of the work done and the results obtained during the second year
of the program is contained in the remaining chapters of this document.
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ITI. MATERIALS

The results of previous testing, Tasks I through IV of the program (Ref 8),
identified only two alloys, of the fifteen studied, as legitimate candidates
for additional cryostraining studies. Initially, it was intended tec test both
alloys, PH 14-8 Mo and MP 35 N, in Task VI, along with PH 15-7 Mo and 17-7 PH.
Unfortunately, an adequate supply of MP 35 N sheet could not be obtained in
time to meet the program schedule requirements. Consequently, in Task VI,
three alloys from the same alloy system were tested: PH 14-8 Mo, PH 15-7 Mo,
and 17-7 PH. All are semi-austenitic precipitation hardening corrosion resist-
ant steels.

The three semi-austenitic precipitation hardening steels tested are alloys
developed by Armco Steel Corporation, Middletown, Ohio. The first of these to
be developed was 17-7 PH. It is essentially a modified 301 stainless steel
(Ref 9), the major changes being the addition of aluminum and the reduction of
the permissible carbon and manganese contents. As a result, 17-7 PH, unlike
301, can be strengthened by thermal treatment. Development of PH 15-7 Mo and
PH 14-8 Mo followed, in order, the development of 17-7 PH.

In Condition A, a mill-annealed condition often referred to as the solution-
treated condition, the three alloys have an austenitic structure, are ductile,
and can be formed by methods used to form the austenitic stainless steels. In
this condition, because of their austenitic structure, the alloys retain good
ductility at -320°F (78°K).

‘These steels are hardened by the austenite-to-martensite transformation,
and by a precipitation hardening treatment (aging) following transformation.
The aging treatment also serves to temper the martensite.

Transformation of the austenite to martensite in these steels is conven-
tionally accomplished either by thermal treatment or by cold work (cold roll-
ing at the mill) (Ref 10). A cold work method of transformation, substituting
uniaxial tensile straining for cold rolling, was ideally suited to the program.
Using this procedure, the materials were strained in the ductile condition
(Condition A) to induce the transformation and were then aged for additional
strengthening.

The materials procured for testing in Task VI are described below:

1. PH 14-8 Mo Vacuum Induction Melted

Materials Specification: North American Specification, MB 160-015 E
Sheet Size: .050 x 36 x 120 in. (0.127 x 91 x 305 cm)
Surface Finish: 2D

Temper: Condition A
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Chemical Composition:

Element % by weight Element % by weight
C .039 Cr 15.18
Mn .04 Ni 8.20
p .003 A 1.27
S .004 Mo 2.22
Si .04 Cu .05
Fe Remainder
Mechanical properties*
Tensile yield .
. . . Elongation
‘o Grain Ultimate tensile strength . | Hardness
Condition | 4ivection strength (0.2% offset) pgrgﬁgﬁe;n Rockwell
psi N/cm? psi N/cm? (5.08 cm)
A L 129 800 | 89 500 58 300 | 40 200 30.0 B 89.0
- A T 125 600 | 86 600 56 600 | 39 000 31.5 B 89.0
SRH 950 L 227 500 | 156 900 [ 203 900 | 140 600 9.0 C 49.0
SRH 950 T 229 000 | 157 900 | 204 500 | 141 000 7.0 C 49.0
SRH 1050 L 215 500 | 148 600 | 201 500 | 138 900 8.0 C 44.5
SRH 1050 T 215 800 | 148 800 | 200 200 | 138 000 5.5 C 44.5

* Reported and certified by the supplier.

2. PH 15-7 Mo

Materials Specification: Aerospace Materials Specification, AMS 5520A
Sheet Size: .050 x 36 x 120 in. (0.127 x 91 x 305 cm)

Surface Finish: 2D

Temper: Condition A

Chemical Composition:

Element % by weight Element % by weight
C .08 Cr 15.17
Mn .60 N1 7.26
P .021 Ag 1.23
S . 019 Mo 2.27
Si . 034 Cu .10
Co .08 Fe Remainder
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Mechanical proper

ties*

Tensile yield Elonaatio
Condition Grain Ultimate tensile strength ercgnt112 Hardness
direction strength (0.2% offset) p2 fnches Rockwel1
psi N/cm? psi N/cm? (5.08 cm)
A L 123 800{ 85 400 59 200 ] 40 800 41.5 B 91.0
A T 122 200 | 84 300 60 300 | 41 600 37.5 B 91.0
TH 1050 L 210 000} 144 800 | 201 500 | 138 900 10.0 C 45.0
TH 1050 T 217 800 | 150 200 | 204 800 | 141 200 7.0 C 45.0
RH 950 L 230 000 { 158 600 | 218 200 | 150 400 9.5 C 48.0
RH 950 T 236 400 | 163 000 | 220 100 | 151 800 7.0 C 48.0
* Reported and certified by the supplier.
3. 17-7 PH
Material Specification: MIL-5-25043C
7Sheet Size: .050 x 36 x 120 in. (0.127 x 91 x 305 cm)
Surface Finish: 2D
Temper: Condition A
Chemical Composition:
Element % by weight Element % by weight
C .07 Cr 17.08
Mn .49 N 7.44
p .017 Az 1.05
S .018 Mo .31
Si .38 Cu .28
Co .07 Fe Remainder
mecnanical properties*
Tensile yield .
Condition Grain Ultimate tensile strength E;$232:1$2 Hardness
direction strength (0.2% offset) p2 inches Rockwel1
psi N/cm? psi N/cm? (5.08 cm)
A L 118 200 | 81 500 48 300 | 33 300 49.0 B 87.0
A T 114 100 { 78 700 45 000 | 31 000 50.0 B 87.0
TH 1050 L 193 500 | 133 400 | 169 000 |116 500 10.0 C 43.0
TH 1050 T 139 100 | 130 400 | 168 500 |116 200 9.0 C 43.0
RH 950 L 221 000 | 152 400 | 203 500 }140 300 10.0 C 48.0
RH 950 T 215 500 {148 600 | 193 800 |133 600 8.0 C 48.0

* Reported and certified by the supplier.
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In addition to the sheet stock, weld wire was also procured for use in pre-
paring the welded specimens tested in Task VI; characteristics of the weld wire
are:

PH 14-8 Mo wire, 0.045 in. (0.114 cm) diameter; North American
Specification LBO 160 117 C

Chemical Composition:

Element % by weight Element % by weight
C .038 Cr 14.43
Mn .43 Ni 8.17
Si .38 Mo 2.17
S .003 Ag 1.23
P .005 Fe Remainder

W PH 15-7 Mo wire, 0.045 in. (0.114 cm) diameter, AMS 5813A

Chemical Composition:

Element % by weight Element % by weight
C .067 Cr 14.74
Mn A1 Ni 7.50
Sq .34 Mo 2.23
S .025 Ag .95
p .007 Fe Remainder

W 17-7 PH wire, 0.045 in. (0.114 cm) diameter, SMX 7-59 B, Class 1

Chemical Compoéition:

Element % by weight Element % by weight
C .067 Cr 16.54
Mn .44 Ni 7.40
Si .20 Ag W91
S .012 Fe Remainder
P .010
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IV. PROCEDURES AND EQUIPMENT
TASK VI - SELECTION OF A PROMISING ALLOY

Task VI was conducted to develop data by which to compare the three
alloys tested with respect to changes in room temperature tensile properties
induced by straining at -320°F (78°K). The objective of this Task was to
determine through a comparative evaluation of test results, the alloy of the
three tested that should be tested in Tasks VII and VIII.

Task VI was divided into four sub-tasks:

1. Parent Metal Tests;

2, Weldment Tests;

3. Higher Strain-Rate Tests;
4. Roll-Straining Tests.

The test plan and the procedures and equipment used in conducting the
Task VI tests are described in the following paragraphs by subtask.

Parent Metal Tests

Purpose: The purpose of this series of tests was to determine how uniform
straining in uniaxial tension at -320°F (78°K) affected the room temperature
tensile properties (both longitudinal and long transverse) of each alloy.

Approach: To develop the necessary data the following plan was followed:

1. Three longitudinal and three long transverse specimens of each
alloy, in Condition A, were tensile tested to failure at room
temperature. Like quantities of specimens of each alloy were
gimilarly tested at -320°F (78°K). The properties measured were
ultimate tensile strength, total elongation, and uniform elonga-
tion.

2. The average uniform elongation was calculated for each combination
of alloy, grain direction, and temperature. These averages were
established as uniform strain capability (USC) values.

3. Four target strain values (strain levels) were arbitrarily selected
for each combination of alloy and grain direction. Four levels
were selected to facilitate graphical presentation of the test
results. The strain levels used are defined in Table 6.

4. Specimens of each alloy were prepared and tested in the conditions
identified in Table 7.
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Table 6. Strain Level Definitions, Task VI Parent Metal Tests

Strain Level Definition

A(L) 40% of an alloy's USC(l)in the 1ongitudina1(2)gra1n direc-
tion at -320°F (78°K).

B(L) 60% of an ?11oy;s USC in the 1ongitud1na1(2)gra1n direction
at -320°F (78°K).

c(L) 75% of an ?11oy;s USC in the 1ongitudina1(2)gra1n direction
at -320°F (78°K).

D(L) 90% of an ?110y;s USC in the 10ng1tud1na1(2)gra1n direction
at -320°F (78°K).

A(T) 40% of an alloy's USC in the Tong transverse(z)grain direc-
tion at -320°F (78°K).

B(T) 60% of an alloy's USC in the Tong transverse(z)grain direc-
tion at -320°F (78°K).

c(T) 75% of an alloy's USC in the long transverse(z)grain direc-
tion at -320°F (78°K).

D(T) 90% of an alloy's USC in the long transverse(z)grain direc-
tion at -320°F (78°K).

NOTE: 1. USC = uniform strain capability.
2. Relative to final mill rolling.

Equipment: A Balwin Universal Test Machine, 50 000 1b (222 40Q0N) capacity,
Model FGT, and standard accessories were used for specimen straining and
testing at room temperature. The same machine, an open-end cryostat, and
special load linkage systems (Figure 5), were used for straining and testing
at -320°F (78°K).

Cryogen: The cryogen used for specimen straining and testing at -320°F (78°K)
was liquid nitrogen (LNj5).

Specimens: Specimens of the type shown in Figure 18 were used in the tensile
testing of unstrained material at room temperature and -320°F (78°K).

Specimens of the type shown in Figure 19 were strained at room temperature
and -320°F (78°K). After being strained the specimens were remachined to the
configuration shown in Figure 20 for room temperature tensile testing.

One surface of each specimen of the types shown in Figures 18 and 19 had
a 0.100 inch square grid pattern, of the type shown in Figure 3, applied
(photographically) to one surface. The grid lines were used as datum lines
for strain measurement.
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Table 7 - Test Schedule, Task VI Parent Metal Tests

No. of Specimens

per Alloy Specimen Design
Type of Test | Material Condition Longitud- | Trans- | Fig. 18 | Fig. 19
inal verse + Fig. 20
Room temp Strained at room
tensile temp:
0% + aged 3 3 X -
Level A(L) 3 - - X
Level A(L) + aged 3 - - X
Level A(T) 3 - X
Level A(T) + aged 3 - X
Level B(L) 3 - - X
Level B(L) + aged 3 - - X
Level B(T) - 3 - X
Level B(T) + aged - 2 - X
Level C(L) 3 - - X
Level C(L) + aged 3 - - X
Level C(T) - 3 - X
Level C(T) + aged - 3 - X
Level D(L) 3 - - X
Level D(L) + aged 3 - - X
Level D(T) - - 3 - X
Level D(T) + aged - 3 - X
Strained at -3200F (780K):
0% 3 3 X -
0% + aged 3 3 X -
Level A(L) 3 - - X
Level A(L) + aged 3 - - X
Level A(T) - 3 - X
Level A(T) + aged - 3 - X
Level B(L) 3 - - X
Level B(L) + aged 3 - - X
Level B(T) - 3 - X
Level B(T) + aged - 3 - X
Level C(L) 3 - - X
Level C(L) + aged 3 - - X
Level C(T) - 3 - X
Level C(T) + aged - 3 - X
Level D(L) 3 - - X
Level D(L) + aged 3 - - X
Level D(T) - 3 - X
Room temp Level D(T) + aged - 3 - X
tensile
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Figure 18 Tensile Specimen for Testing Unstrained Material.
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Tensile Testing: Tensile tests were conducted in accordance with the procedures
and specifications of ASTM E8-69.

Straining: Specimens were strained at a rate of 0.050 inch per inch per minute
(0.050 cm per cm per minute), regardless of the temperature at which the strain-
ing was done.

When specimens were strained to a given strain level at room temperature,
strain was measured directly by means of the grid marks, a 10 power magnifying
glass, and a 6-inch scale with 0.010 inch graduations. When the proper amount
of strain was reached, the load was released.

Since the specimens strained at -320°F (78°K) were immersed in LN, when
strained, direct measurement of strain was impractical. However, it was possible
by experimentation (Ref. 8) to relate platen travel to specimen strain. Thus,
for the specimens strained at -320°F (78°K), strain was measured indirectly by
measuring platen travel with a dial indicator.

Aging: The industry standard aging treatment for developing the CH-900 condi-
tion in all three alloys is one hour at 900°F (756°K. This aging treatment
was given all specimens that were aged in Task VI. Certified and calibrated
furnaces were used. All specimens were thoroughly cleaned and ccated with
Turco-Pretreat before they were aged.

WELDMENT TESTS

Purpose: This series of tests was conducted to determine how each alloy was af-
fected by welding before cryostraining.

Approach: Butt-welded test panels of the configuration shown in Figure 21 were
prepared, one test panel per alloy. Specimens for testing and straining were
made from each panel. Table 8 is the test schedule for the weldment tests,
showing the number of specimens tested per alloy, and how each was conditioned
for testing. ’
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Table 8. -Test Schedule, Task VI Weldment Tests

No.(of Specimins
. st Per Alloy
Type of Test Material Condition Longitudinal Grain
Direction

Room temperature As received + welded 3
tensile
-320°F (78°K) tensile| As received + welded 3
Room temperature As received + welded + strained*
tensile at room temp to Level E** + aged*** 3
Room temperature As recegved +Owe1ded + strained*
tensile at -320°F (78°K) to Level E** +

aged*** 3

Total 12

* Strain rate, 0.050 inch per inch per minute
** Level E - 60% of USC at -320°F (78°%K)
**% One hour at 900°F (756°K)

For welded specimens the USC for each alloy was established as the average
of the uniform strains measured on the welded specimens of the alloy that had
been tested to failure at -320°F (78°K).

General: The equipment and procedures used in conducting the weldment tests
were the same as those used in conducting the parent metal tests, except as
specifically noted in the following paragraphs.

Welding: The test panels were welded by the tungsten-inert-gas method. The
basic equipment used was: an airline fixture, Model No. 11312 HLZ with stain-
less steel hold down fingers and backup; Sciaky Controller, Model No. F18 DTX-
W1000-S6; and an Airco power supply, Model No. 3AD-24HEPAB-B. The weld schedules
used to weld the test panels were:

PH 14-8 Mo:
Material: PH 14-8 Mo, 0.050 in. (0.127 em) thick
Condition: Condition A
Weld Wire: WPH 14-8 Mo, 0.045 in. (0.114 cm) diameter
Gas: Argon -
Gas Flow: Torch, 30 cf/hr (0.85 m3/hr)
Backup, 13 cf/hr (0.38 m3/hr)
Trailing shield 35 cf/hr (1.05 m3/hr)
Volts: 8
Amperes: 72
Wire Feed: ' 17 in./min (43.18 cm/min)
Travel Speed{ 8 in./min (20.32 cm/min)
Electrode: 0.093 inch (0.236 cm) diameter, tungsten.
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PH 15-7 MO:
Material: PH 15-7 Mo sheet, 0.050 in. (0.114 cm) thick
Condition: Condition A
Weld Wire: WPH 15-7 Mo
Gas: Argon
Gas Flow: Torch, 30 cf/hr (0.85 m3/hr)
Backup, 13 cf/hr (0.38 m3/hr)
Trailing shield, 35 cf/hr (1.05 m3/hr)
* Volts: 8.3
Amperes: 71

Wire Feed:

Travel Speed:

17 in./min (43.18 cm/min)
7.8 in./min (19.8 cm/min)

Electrode: 0.093 inch (0.236 cm) diameter, tungsten
17-7 PH:
Material: 17-7 PH sheet, 0.050 in. (0.127 cm) thick
Condition: Condition A
Weld Wire: W1l7-7 PH
Gas: Argon
Gas Flow: Torch, 30 cf/hr (0.85m3/hr)
Backup, 13 cf/hr (0.38 m3/hr)
Trailing shield, 35 cf/hr (1.05 m3/hr)
Volts: 8.3
Amperes: 70
Wire Feed: 19.5 in./min (49.3 cm/min)

Travel Speed:
Electrode:

7.8 in./min (19.8 cm/min)
0.093 inch (0.236 cm) diameter, tungsten

Inspection: After welding, all panels were given visual, penetrant, and X-ray
inspections.

Specimens:: Specimens of the type shown in Figure 22 were used in the tensile
testing of unstrained weldments at room temperature and -320°F (78°K) .

Specimens of the type shown in Figure 23 were strained at room temperature
and at -320°F (78°K). After being strained, they were remachined to the con-
figuration shown in Figure 24 for tensile testing at room temperature.

The weld specimens were not gridded because the weld bead, which was not
removed, hampered the processing and degraded the accuracy of the pattern.
Instead, one surface of the gage section of a specimen was painted with lay-
out fluid and strain datum lines, 0.250 inch (0.635 cm) apart and transverse
to the axis of the specimen, were scribed on the painted surface.
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Straining: The techniques used for specimen straining and strain measurement in
the parent metal test series were used in the weld test series.

HIGHER STRAIN RATE TESTS

Purpose: Until this series of tests was conducted, all of the specimens that

had been strained, except the Ti 6AL-4V specimens strained in Task III, had been
strained at a program standard rate of 0.050 inch per inch per minute (0 050 cm/
em/min). Therefore, this series of tests was conducted to determine whether or
not cryostraining at a faster rate would cause any or all of the three alloys

to develop significantly different room temperature tensile properties than those
developed by cryostraining at the program standard rate.

Approach: The same procedures, techniques, and types of specimens used in con-
ducting the parent metal test series were used in conducting the higher strain
rate tests, except that specimens were strained at a faster rate.

The test schedule for the higher strain rate tests is shown in Table 9.

Table 9 Test Schedule, Task VI Higher Strain Rate Tests

Type of Test Material Condition- No. of Specimens

~ (Per Alloy)

Longitudinal Grain
Direction

Room temp tensile As received ' 1. 3
1.5 in./in./min (1.5 cm/
cn/min) strain rate

-3200F (789K) tensile As received 3
1.5 in./in./min (1.5 cm/
cm/min) strain rate

Room temp tensile Strained at room temp

0.005 in./in./min(0.005 1.5 in./in./min (1.5 cm/

cm/cm/min) strain rate cm/min) to:
Level X* 3
Level X*+ aged 3
Level Y** 3
Level Y**+ aged 3

Room temp tensile Strained at -320°F (78°K)

0.005 in./in./min(0.005 1.5 in./in./min (1.5 cm/

cm/cm/min) -strain rate cm/min) to:
Level X* 3
Level X*+aged 3
Level Y** 3
Level Y**+ aged 3

Total 30

*Level X, 50% of the alloy's uniform strain capability at -320°F (78°K)

** Level Y, 75% of the alloy's uniform strain capability at -320°F (78°K)
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Straining: All specimens strained for the higher strain rate tests were strained
at a rate of 1.5 in./in./min (1.5 cm/em/min).

ROLL STRAINING TESTS

Purpose: The purpose of these tests was to determine how the room temperature
tensile properties of the three alloys were affected by roll-straining at -320°F
(78°K).

Approach: To develop the required data, samples of each alloy were rolled at
room temperature and others at -320°F (789K). The materials were rolled until
a reduction in thickness of 10 to 20 percent was achieved. Tensile bars were
made from the roll-strained materials and tensile tested at room temperature.
The roll strain test schedule is shown in Table 10.

Table 10 Test Schedule, Task VI Roll Strain Tests

Type of Test Material Condition No. of Specimen
(Per Alloy)
Longitudinal Grain
Direction
Room temp tensile As received + roll strained*
at room temp, 3
+ aged 3
As received + roll strained*
at -3200F (789K) 3
+ aged 3
Total 12
*Thickness reduction - approximately 10 to 20%.

Equipment: A Stanat rolling mill, Model TA-215 was used to roll-strain the
materials.

For tensile testing and aging; the same equipment that had been used in the
parent metal test series was used.

Procedures: The blanks for roll straining were 3 inch (7.6 ecm) x 5 inch (12.70
cm) pieces of sheet material, with the longitudinal grain direction parallel
to the 5 inch (12.70 cm) length. When the room temperature rolling operations
were performed, the blanks were rolled in repeated passes until the desired
reduction in thickness was achieved. When the materials were rolled at -320°F
(78°K), the blanks were immersed in LN, for a minimum of 5 minutes, passed
through the rolls, again immersed in LN, for a minimum of 5 minutes, and again
passed through the rolls. This sequence was repeated until the desired thick-
ness reduction was achieved. Becaused the blanks were small they were easily-
and quickly handled. 1In practice, it required less than ten seconds, to
remove a blank from the LN,, feed it into and pass it through the reolls, and
return it to the LN,.

Specimens of the type shown in Figure 1 were made from the rolled blanks
and tested at room temperature.
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ANALYSIS

The results of all the tests conducted during Task VI were analyzed. Based
on a comparative evaluation of the overall performance of the three alloys, PH
14-8 Mo was selected for testing in Tasks VII and VIII.

TASK VIT - THERMAL PROCESSING STUDIES

Purpose: PH 14-8 Mo is usually procured in either of two conditions: Condition
A, the solution treated condition, cr Condition CH-900, cold rolled at the mill
to approximately a 60 percent reduction, and aged one hour at 900°F (756°K).

During the preceding tasks, whenever PH 14~8 Mo specimens were aged, the
CH-900 aging treatment, one hour at 900°F (756°K) was used. Task VII was con-
ducted to study the effects produced by other aging treatments on room tempera-
ture tensile properties developed by cryostrained PH 14-8 Mo. The objective of
Task VII was to select twenty combinations of cryostrain-aging treatments for
study in the Task VIIT stress corrosion and toughness tests.

Approach: The basic plan for Task VII is defined in Tables 11 and 12, the
straining and aging schedules. Four groups of specimens were strained.

Three groups were strained at -320°F (78°K) to each of three strain levels,
identified as P, Q, and N, in order of increased strain. The fourth group of
specimens was strained at room temperature to a strain equal to level N at
-320°F (78°K). Then, as indicated in Table 12, specimens were given various
aging treatments. After being aged the specimens were remachined and room
temperature tensile tests were conducted to obtain ultimate tensile strength,
tensile yield strength, and elongation. Based on these test results twenty
combinations of cryostrain and aging treatments (temperature and time) were
selected for use in the Task VIII tests.

Table 11 - Straining Schedule, Task VII

Strain Level
Uniform Strain Percent of Target | Strain
Number of | Capability (USC) USC at -3200F | Strain, | Temp
Specimens | at -320°F (789K) | Designation | (789K) Percent | OF (°k)
60 20.0 P 50.0 10.0 -320 (78)
60 20.0 Q 65.0 - 13.0 -320 (78)
60 20.0 N 80.0 16.0 -320 (78)
18 20.0 S 80.0 16.0 RT

Specimens: The specimens used throughout in Task VII were gridded specimens
of the type shown in Figure 19. Aftetr being strained, the specimens were re-
machined to the configuration shown in Figure 20, and then aged in accordance
with the schedule given in Table 12 on the following page.
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Procedures: For operations common to Task VI and Task VII, such as cryo-

straining, strain measurement, and aging, the techniques and procedures used

in Task VI were also used in Task VII.

Table 12 - Aging Schedule, Task VII

Aging Temp | Aging Time (hr) No. of Specimens
Strain Level
P (10%)]Q (13%)|N (16%)[S (16%)
800°F 0.5 2 2 2 -
(7000K) 1 2 2 2 -
2 2 2 2 -
4 3 3 3 -
6 3 2 2 -
8 2 2 2 -
12 1 - 2 -
900°F 0.5 2 2 2 -
(7569K) 1 2 3 3 2
2 3 3 2 -
4 3 2 2 -
4.5 3 4 2 -
5 2 2 2 -
5.5 2 3 2 -
6 2 2 2 -
7 - - - 2
8 2 2 2 -
16 1 1 1 -
9500F 0.5 2 2 2 -
(7839K) 1 2 2 2 2
2 2 3 2 -
4 3 3 2 -
6 2 1 2 -
7 - - - 2
8 2 1 2 -
16 1 1 1 -
1000°F 0.5 2 2 2 -
(8119K) 1 2 2 3 2
2 2 2 2 -
4 2 2 2 -
7 - - - 2
10500F 1 - - - 2
(8390K) 7 - - - 2
11000F
(8669K) 0.5 2 2 2 -
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ANALYSIS

The data from the Task VII tests were analyzed to determine which combina-
tions of strain level and aging temperatures and times should be used in the

Task VIIT toughness and stress corrosion tests. The following combinations
were selected and used for the 10% and 15% prestrained materials.

AGING
TEMPERATURE TIME
°F °K {hr)
800 700 1, 4, 8
950 783 1, 4, 8
900 756 1, 2, 4, 8
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TASK VIII - TOUGHNESS, STRESS CORROSION, HIGH ENERGY RATE STRAINING
AND COMPRESSION TESTS

Purpose: Task VIII was conducted to determine how cryostraining at -320°F
(78°K) affected the toughness, stress corrosion resistance, and compressive
yield strength of PH 14-8 Mo; and to investigate the effects of straining PH
14-8 Mo at -320°F (78°K) using a high energy rate (explosive) technique.

Approach: Task VIII was divided into four subtasks that will be discussed
separately. In general, however, many operations conducted in Task VIII were
similar to operations performed in preceding tasks. For example, gridding of
specimen stock, straining, strain measurement, and heat treatment. The tech-
niques and procedures used in Task VIII to perform operations common to other
tasks were the same as those used in the preceding tasks.

At the end of Task VII, twenty combinations of cryostrain, aging tempera-
ture, and aging time, were selected as specimen conditioning treatments for
the toughness and stress corrosion studies scheduled for Task VIII. The basic
plan for both the toughness and stress corrosion tests was to subject speci-
mens representative of each of the twenty conditions to equivalent toughness
and corrosion tests to develop data for comparative evaluation of the condi-
tioning treatments,

The plan for the high energy rate straining tests was to explosively strain
samples of the PH 14-8 Mo at room temperature and other samples at -320°F
(78°K) . Tensile specimens were prepared from the strained material, aged, and
tensile tested at room temperature to obtain data for comparison with data
from the Task VI Parent Metal and Higher Strain Rate tests.

The compression tests were conducted to determine how prestraining in
uniaxial tension affected the room temperature compressive yield strength of
PH 14-8 Mo. For this purpose compressive test specimens were prepared from
PH 14-8 Mo sheet stock that had been prestrained at -320°F (78°K) or at room
temperature, These specimens were tested at room temperature, some in the
prestrained and unaged condition, others after having been given one of several
aging treatments selected for the study. Equal quantities of longitudinal and
long transverse specimens were prepared and tested. Also, for comparisonm,
tensile specimens were prepared from prestrained material, aged along with the
compression specimens, and tested at room temperature. However, where specimens
with corresponding prestrain, or prestrain and aging treatments had been tested
in the Task VI Parent Metal test series, the Task VI data were used for com-
parsion. Also, compression tests were conducted on specimens prepared from
stock that had been heat treated to the SRH 950 and SRH 1050 conditions.
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TOUGHNESS TESTS

Purpose: This series of tests was conducted to develop data to compare the
toughness of PH 14-8 Mo in various cryostrained-aged conditions.

Approach: The toughness series of tests consisted of the following:

1. Room temperature tensile test (control specimens).
2. Room temperature notched-tensile tests.

3. Room temperature center cracked toughness tests.

The toughness test schedule, including baseline testing, is shown in Table
13.

Procedures:

Control Specimen Tests: Unnotched specimens of the type that had been used
in Task VII (Figures 19 and 20) were used as control or baseline specimens for
the notched tensile tests., These specimens were strained and then remachined
in the same way that the Task VII specimens had been processed. After straining
and remachining these specimens were stored until the notched tensile specimens
had been strained and were ready for aging. The notched and unnotched specimens
were then aged together, in accordance with the schedule, Table 13. Room tem-
perature tensile tests were then conducted on the unnotched control specimens.
The properties measured in these tests were ultimate tensile strength, tensile
yield strength, and elongation in 2 inches.

Notched Tensile Tests: Specimens of this type shown in Figure 25 were ap-
propriately strained, either at room temperature or at —-320°F (789°K), in accord-
ance with the test schedule. The usual procedures and techniques were used to
strain these specimens, except that because of their size, the 150 000 1b
(667 500 N) capacity Baldwin universal test machine and a large cryostat were
used (Figure 26). In all other respects the usual straining procedures were
followed.

After being strained, the specimens were notched as shown in Figure 27.
The electrical discharge machining (EDM) process was used for this operation.
The machine used was a Cincinnati Milling Machine Company EDM, Model No. 250.
The setup for producing the notches is shown in Figure 28.

It was necessary to remove the scale that formed on the notch surfaces during
the EDM process by hand filing. After this was done, the notch radii were meas-
ured and found to range from 0.003 in. (0.008 cm) to 0.005 in. (0.012 cm). A
notch radius of 0.001 in. (0.003 cm) maximum was needed to achieve the desired
stress concentration factor (Kt) of 16 or greater (Ref. 12). Therefore, each

notch radius was hand dressed to 0.001 in. (0.003 cm).

A Bausch & Lomb 20~inch (50.8 cm) optical comparator, Model No. 38-13-20
was used to measure critical dimensions of the notched specimens. The dimensions
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Figure 25 Configuration of Straining Blank for Notched Tensile Specimen
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Figure 26 Setup for Straining the Notched Tensile and Toughness Blanks
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measured (at 20X magnification) on each specimen were:

1. The width of the specimen at the notches,
2. The depth of both notches.

3. The distance between the two notches.

4, The radius of each notch.

The specimens were then tested to failure in tension at room temperature.
The properties measured were ultimate tensile strength, and elongation in 2
inches (5.08 cm).

¢.-sym
|
t =
W
¢ - sym—
0.500 0.001 R T .
(1.270) {0.003) VP ur}ches
(centimeters)

Figure 27 Configuration of Notched Tensile Specimen

Center Cracked Tests: The specimens strained to the 10 percent and 15 per-
cent strain levels at room temperature and to the 10 percent level at =3200F
(780K) (Table 13) were of the type shown in Figure 28. Doublers were required
in the grip portions of this type specimen to prevent bearing failure during
straining. The doublers were attached by spotwelding. This method of attach-
ing the doublers was satisfactory for room temperature straining and for strain-
ing 10 percent at —3200F (780K). However, to achieve 15 percent strain at ~3200F
(780K), it was necessary to use mechanical fasteners (huck-bolts) to attach the
doublers, and also to modify the design of the straining specimen. The speci-
mens strained 15 percent at =3200F (789K) were the type shown in Figure 29.

The strained specimens were made into test specimens of the type shown in
Figure 30 (Ref. 13 and 14). These specimens were made by shearing and machin-
ing the gage sections of the strained specimens into rectangular blanks 3
inches (7.62 cm) x 12 inches (30.48 cm). The blanks were then identified and
appropriately aged (Table 13). Next, three holes, as shown in Figure 30, were
added by the EDM process. Then, after the holes had been hand dressed to re-
move scale formed during the EDM operation, the center notches were extended by
fatigue cracking. For this purpose the specimens were loaded in axial tension
in a Baldwin universal fatigue testing machine, Type SF-10-4, 10 000 1b
(44 500 N) capacity.
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The center cracked specimens were tested on the 150 000 1b (667 500 N) ca~
pacity Baldwin universal test machine. An Instron extensometer, G51-13, was
used as a compliance gage. This was attached to the specimen, spanning the
center crack at its midpoint. Strain was measured over a 0.500 inch (1.27 cm)

gage length. An X-Y recorder was used to autographically plot a load-strain
curve for each test.
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Figure 30 Configuration of the Center-Cracked Specimens
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STRESS CORROSION TESTS

Purpose: This series of tests was conducted to determine how PH 14~8 Mo in
various strained and unstrained conditions was affected by alternate immersion
in an aqueous 3.5 percent NaCl solution.

Approach: The stress corrosion test schedule is given in Table 14. Specimens
of the PH 14-8 Mo sheet material were prepared in the conditions and quantities
indicated and exposed to 500 cycles of alternate immersion in an aqueous 3.5
percent NaCl solution. During each immersion cycle the specimens were sub-
merged in the solution for 10 minutes and out for 50 minutes.

All the specimens exposed to the solution in a stressed condition (Table 14)
were so prepared that the outer fiber tensile stress was applied in the long
transverse grain direction.

Procedures: Corrosion specimens of room temperature strained and cryostrained
material were prepared as follows:

1. 20 blanks of the type shown in Figure 31 were strained to level
A-A (target strain 10%Z) at -320°F (78°K). The usual straining
procedures were followed.

2. 20 blanks of the same type were strained to level B-B (target
strain 15%) at -320°F (78°K).

3. 2 blanks were strained to level A-A (target strain 107) at room
temperature.

4., 2 blanks were strained to level B-B (target strain 157) at room
temperature.

5. 3 corrosion specimens t x 0.250 inches (0.635 cm) wide x 5.312:
inches (13.44 cm) long were made from the gage section of each of
the strained blanks (Figure 32).

6. The corrosion specimens were aged in accordance with the Test
Schedule (Table 14).

Six corrosion specimens of the type shown in Figure 32 were made from a 3
inch (7.62 cm) x 5.312 inch (13.44 cm) piece of the PH 14-8 Mo sheet material
that had been heat treated to the SRH-950 condition. The following heat treat-
ment was used:

The material was cleaned and coated with Turco Pretreat. It was

heated to 1700°F (1200°K) and held at that temperature for one hour,

air cooled to room temperature and immediately cooled to -100°F (200°K).
It was held at -100°F (200°K) for 8 hours and then aged one hour at
950°F (783°K) and air cooled to room temperature.
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Six corrosion specimens of the type shown in Figure 32 were made from a 3
inch (7.62 cm) x 5.312 inch (13.44 cm) piece of the PH 14-8 Mo sheet material
that had been heat treated to the SRH-1050 condition. The heat treatment for
this material was the same as for the piece heat treated to SRH-950, except
that the aging temperature was 1050°F (839°K) rather than 950°F (783°K).

Six corrosion specimens of the type shown in Figure 32 were made from the
PH 14-8 Mo Condition A material.

As shown in the test schedule (Table 14) one-third of the total quantity
of corrosion specimens were exposed to the corrosive medium in the free, un-—
stressed condition. Specimens of this type were prepared for exposure as fol-
lows:

1. The Turco Pretreat used in the heat treating operations was removed
from the surfaces of the spec1mens by hand dressing with a commer-
cial cleanser.

2, The specimens were thoroughly cleaned. The cleaning included vapor
degreasing followed by a series of water rinses, then alkaline
cleaning and thorough rising in deionized water. The specimens
were then thoroughly dried and sealed in plastic envelopes until
needed.

3. To prepare them for exposure the specimens were removed from the
protective envelopes and, with nylon cord, were suspended from the
specimen holding rack of the alternate immersion test machine.

" All other corrosion specimens were exposed to the corrosive medium in a
stressed state. As indicated in Table 14, one~third of the total quantity of
specimens were stressed to 50 percent of tensile yield strength, one-third to
80 percent of tensile yield strength, and exposed in those conditions. To
stress the specimens for exposure, they were loaded in four-point bending as
shown in Figure 33. Since tensile yield strength varied with strain level
and aging treatment, the deflection to develop the required outer fiber stress
was calculated for each stressed specimen (Table 14).

These specimens were handled in the same manner as unstressed specimens,
through cleaning and protective packaging. Installation of this type of spec-
imen into the four-point loading fixture was accomplished as follows:

1. A fixture and specimen were assembled into the device shown in
Figure 34. This device held the fixture in position so that after
the dial indicator had been zeroed to the properly positioned but
undeflected specimen, the required deflection could be set by ad-
justing the set-screw activated loading block to the proper posi-
tion. Deflection was measured with the dial indicator.
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Table 14 Test Schedule, Task VIII Stress Corrosion Tests

Aging Treatment Midpoint Outer fiber stress
Material Straining Test s lecti -
ma a c Time | Temperature| deflection |¢ of tensile . )
condition blank N specimen No. (hr) OF (0K) — — yield psi N/cm
Level A-A strained | AA-IN AA-1IN-1 1 800 (700) {0 0 0 0 0
10% at -320°F -2 1 0.374] 0.950 50 124 000 | 85 500
(780K) -3 1 0.598( 1,52 80 198 000 {137 0600
AA-2N AA-2N-1. 1 0 0 0 0 0
-2 1 0.374§ 0.950 50 124 000 | 85 500
-3 1 0.598] 1.52 80 198 000 {137 000
AR-3N AA-3N-1 4 0 0 0 0 0
-2 4 0.405)1.03 50 134 000 | 92 500
-3 4 0.646 | 1.64 80 214 000 {148 000
AA-4N AA-4N-1 4 0 0 0 0 0
-2 4 0.405 | 1.03 50 134 000 | 92 500
-3 4 0.646 | 1.64 80 214 000 |148 000
AA-5N AA-5N-1 8 0 0 0 0 0
-2 8 0.405 | 1.03 50 134 000 | 92 500
-3 8 0.646 | 1.64 80 214 000 (148 000
AA-6N AA-6N-1 8 0 0 0 0 0
-2 8 0.4051}1.03 50 134 000 | 92 500
-3 8 800 (700) | 0.646 | 1.64 80 214 000 (148 000
AA-7N AA-7N-1 1 900 (756) |0 0 0 0 0
-2 1 0.405 | 1.03 50 134 000 | 92 500
-3 1 0.646 [ 1.64 80 214 000 (148 000
AA-8N AA-8N-1 1 0 0 0 0 0
-2 1 0.405(1.03 50 134 000 | 92 500
-3 1 0.646 | 1.64 80 214 000 (148 000
AA-9N AA-9N-1 2 0 0 0 0 0
-2 2 0.411 | 1.04 50 136 000 | 93 700
-3 2 0.658 | 1.67 80 218 000 (150 000
AA-10N AA-10N-1 2 0 0 0 0 0
-2 2 0.411 11.04 50 136 000 | 93 800
-3 2 0.658 |1.67 80 218 000 150 000
AA-1IN AA-11IN-1 4 0 0 0 0 0
-2 4 0.414 |1.05 50 137 000 | 94 500
-3 4 0.661 {1.68 80 219 000 |151 00O
AA-12N AA-12N-1 4 0 0 0 0 0
-2 4 0.414 }1.05 50 137 000 | 94 500
-3 4 0.661 |1.68 80 219 000 [151 000
AA-13N AA-13N-1 8 0 0 0 0 0
-2 8 0.417 }1.06 50 138 000 | 95 100
-3 8 0.667 |1.70 80 221 000 (152 000
AA-14N AA-14N-1 8 0 0 0 0 0
-2 8 0.417 11.06 50 138 000 | 95 100
-3 8 900 (756) |0.667 |1.70 80 221 000 {152 000
AA-15N AA-15N-1 1 950 (783) |0 0 0 0 0
-2 1 0.423 |1.07 50 140 000 | 96 500
-3 1 0.676 |1.72 80 224 000 |155 000
AA-16N AA-16N-1 1 0 0 0 0 0
-2 1 0.423 |1.07 50 140 000 | 96 500
-3 1 0.676 |1.72 80 224 000 {155 000
AA-17N AA-17N-1 4 0 0 0 0 0
-2 4 0.417 (1.06 50 138 000 | 95 100
-3 4 0.664 {1.68 80 220 000 [152 000
AA-18N AA-18N-1 4 0 0 0 0 0
-2 4 0.417 |1.06 50 138 000 | 95 100
-3 4 0.664 |1.68 80 220 000 (152 000
AA-19N AA-19N-1 8 0 0 0 0 0
-2 8 .408 11.04 50 135 000 | 93 100
-3 8 0.652 |1.66 80 216 000 1149 000
AA-20N AA-20N-1 8 0 0 0 0 0
-2 8 0.408 |1.04 50 135 000 | 94 000
-3 8 950 (783) 10.652 [1.66 80 216 000 149 000
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Table 14 (cont)

Aging Treatment Midpoint Outer fiber stress
Material Straining Test : deflecti o :
LS - Time | Temperature| UeTIECYION | 9 of tensile : 2
condition blank No. | specimen No. (hr) OF (Ok) vy po yield psi N/cm

Level B-B strained | BB~1N BB~1IN-1 1 800 (700) 0 0 0 0 0
15% at -3200F -2 1 0.487 | 1.24 50 157 000 {108 000
(78%K) -3 1 0.78111.98 80 252 000 [174 000
BB-2N BB-~2N-1 1 0 0 0 0 0
-2 1 0.487 {1.24 50 157 000 (108 000
-3 1 0.781]1.98 80 252 000 (174 000
BB-3N BB-3N-1 4 0 0 0 0 0
-2 4 0.498 11.25 50 159 000 {110 000
-3 4 0.787 | 2.00 80 254 000 [175 000
BB-4N BB-4N-1 4 0 0 0 0 0
-2 4 0.49311.25 50 159 000 (110 000
-3 4 0.787 | 2.00 80 254 000 {175 000
BB-5N BB-5N-1 8 0 o] 0 0 0]
-2 8 0.527 [1.34 50 170 000 [117 000
-3 8 0.843 | 2.14 80 272 000 {188 000
BB-6N BB-6N-1 8 0 0 0 0 0
-2 8 0.527 [1.34 50 170 000 (117 000
-3 8 800 (700) 0.843 | 2.14 80 272 000 (188 000
BB-7N BB-7N-1 1 900 (756) 0 0 0] 0 0
-2 1 0.474 |1.20 50 153 000 |106 000
-3 1 0.760 |1.93 80 245 000 [169 000
BB-8N BB-8N-1 1 0 0 0 0] o]
-2 1 0.474 11.20 50 153 000 {106 000
-3 1 0.760 |1.93 80 245 000 |169 000
BB~9N BB-GN-1 2 0 0 0 0 0
-2 2 0.515 }1.31 50 166 000 115 00O
-3 2 0.828 | 2.10 80 267 000 {184 000
BB-10N BB-10N-1 2 0 0 0 0 0
-2 2 0.515 }1.31 50 166 000 [115 00O
-3 2 0.828 |2.10 80 267 000 }|184 000
BB-11N BB-11N-1 4 0 0 0 0 0
-2 4 0.499 |1.27 50 161 000 |111 000
-3 4 0.800 |2.03 80 258 000 |178 000
BB-12N BB-12N-1 4 0 0 0 0 0
-2 4 0.499 |1.27 50 161 000 |111 000
-3 4 0.800 |2.03 80 258 000 178 00C
BB-13N BB-13N-1 8 0 0 0 0 0
-2 8 0.487 |1.24 50 157 000 |108 000
-3 8 0.781 {1.98 80 252 000 [174 000
BB-14N BB~14N-1 8 0 0 0 0 0
-2 8 0.487 |1.24 50 157 000 |108 000
-3 8 900 (756) 0.781 [1.98 80 252 000 |174 000
BB-~15N BB-15N-1 1 950 (783) 0 0 0 0 0
-2 1 0.508 [1.29 50 164 000 113 000
-3 1 0.812 |2.03 80 262 000 (181 00O
BB-16N BB-16N-1 1 0 0 0 0 0
-2 1 0.508 [1.29 50 164 000 |113 000
-3 1 0.812 |2.03 80 262 000 {181 000
BB-17N BB-17N~-1 4 0 0 0 4} 4]
-2 4 0.496 [1.26 50 160 000 [110 00O
-3 4 0.797 |2.02 80 257 000 {176 000
BB-18N BB-18N-1 4 0 0 0 0 0
-2 4 0.496 1.26 50 160 000 110 000
-3 4 0.797 |2.02 80 257 000 {176 000
BB-19N BB-19N-1 8 0 0 0 0 0
-2 8 0.484 11.23 50 156 000 (108 000
-3 8 0.775 }1.97 80 250 000 |172 000
BB-20N BB-20N-1 8 0 0 0 0 0

:g g 950 (783) Pin Ho]eI FailuTe - Stlr‘aim’ngI
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Table 14 (concl)

Aging treatment Midpoint Outer fiber stress
Material Straining Test : deflection :
cas : Time | Tepperature % of tensile : 2
condition blank No. | specimen No. (hr) Of (°K) - - yield /Psi N/ cm
Condition A N/A XX-1 N/A N/A 0 0 0 0 0
-2 0.08110.203 50 28 500 | 19 700
-3 0.129 § 0.327 80 45 500 | 32 100
-4 0 0 1 0 0 0
-5 0.081 { 0.203 50 28 500 | 19 700
-6 0.129 | 0.327 80 45 500 | 32 100
SRH 950 N/A $9-1 0 0 0 0 .0
-2 0.291 | 0.738 50 102 000 | 70 400
-3 0.465 | 1.18 80 163 000 {112 QOO
-4 0 0 0 0 0
-5 0.291 (0.738 50 102 000 | 70 400
-6 0.465]1.18 80 163 000 112 000
SRH 1050 N/A S1-1 0 0 0 0 0
-2 0.276 1 0.700 50 97 000 | 67 000
-3 0.439 | 1.12 80 154 000 {106 000
-4 0 0 0 0 0
-5 0.276 | 0.700 50 97 000 | 67 000
-6 N/A N/A 0.439 [1.12 80 154 000 1106 000
Level A-A strained AA-1R AA-1R-1 1 900 (756) |0 0 0 0 0
10% at room tem- -2 1 0.217 {0.550 50 70 000 | 48 300
perature -3 1 0.347 10.880 80 112 000 | 72 200
AA-2R AA-2R-1 1 0 0 0 0 0
-2 1 0.217 10.550 50 70 000 | 48 300
-3 1 0.347 | 0.880 80 112 000 [ 72 200
Level BB. strained BB-1R BB-1R-1 1 0 0 0 0 0
15% at room tem- -2 1 0.298 10.756 50 96 000 | 66 200
perature -3 1 0.474 11.20 80 153 000 |105 000
BB-2R BB-2R-1 1 0 0 0 0 0
=2 1 0.298 10.756 50 96 000 [ 66 200
-3 1 900 (756) |0.474 11.20 80 153 000 |105 000
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- C
(12.065)
- 2.125 .500
(5.398) ‘*; ]‘"T“—“)l.zm
A P
i
P
. 0.001 inch
— Deflection 57553 (centimeter)

*Deflection (max) = §%E (3/4 22-a2)

Where:
o = Outer fiber stress. t = Thickness.
a = Distance from Toad point E = Modulus of Elasticity = 29 x 106
to support = 2.125 inches psi (20 x 106 N/cm2)
(5.398 cm).

% = Length between supports = 4.750

inches (12.065 cm).
* Reference: New Departure Handbook, Vol II. Seventh Edition.

Stress Corrosion Specimen Assembled in Fixture

Figure 33 The Method and Fixture Design Used to Apply
Load to Stress Corrosion Specimens
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Figuke 34 The Device and Method Used to Deflect the
Stress Corrosion Specimens
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2, Before a specimen was installed into a loading fixture, Mylar tape
was applied to both ends of the specimen, and to the load points
on the fixture and loading block. This was done to prevent dis-
similar metal contact. After a specimen had been properly de-
flected, a butyl rubber maskent was applied to all surfaces of the
fixture, set screw, and loading block, including those locations
where the specimen contacted the loading block and the fixture.

All unnecessary maskent was subsequently removed from the specimen,
after which the specimen was cleaned with MEK and wiped dry.

The fixtured specimens were suspended from the specimen loading rack of the
alternate immersion machine with nylon cord.

The alternate immersion machine (Fig. 35) consisted of a frame to which
were mounted two butyl rubber lined tanks containing the NaCl solution; a rack
from which the specimens were suspended; a pneumatic cylinder to actuate the
rack; and an electric timer actuated 4-way cylinder valve. The timer was ad-
justed so that for 10 minutes of each hour the cylinder was held in the down-
stroke position, and the specimens were completely submerged in the solution.
For the remainder of each hour the cylinder was in the retracted position,
~ holding the specimens suspended above the solution.

The solution was made of reagent grade NaCl salt and deionized water. The
specific gravity of the solution was adjusted to 1.023. The specific gravity
was tested daily, and additionally, whenever water was added to maintain the
proper level in the tanks. All specimens were removed from test after 523
Lours. Each specimen was cleaned, examined, and observations were recorded.
Sections were removed from selected specimens, as indicated in Figure 32,
mounted in bakelite, ground, polished, etched, and examined at magnifications
to 500X on a Balfont optical metallograph.

HIGH ENERGY RATE STRAINING TESTS

Purpose: This series of tests was conducted to develop data by which to com-
pare the room temperature tensile properties developed by PH 14-8 Mo through
cryostraining and room temperature straining in:

1. Uniaxial tension at a strain rate of 0.050 in./in./min (0.050 cm/
cm/min) (Task VI).
2. Roll straining (Task VI).

3. Uniaxial temnsion at a strain rate of 1.5 in./in./min (1.5 cm/cm/
min) (Task VII).

4. Tension when strained by a high energy rate (explosive) method.
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Figure 35 The Alternate Immersion Machine Specimens and Setups
Used in the Stress Corrosion Tests



Approach: Pieces of the PH 14-8 Mo sheet were explosively formed into a die
having a rectangular, flat bottomed cavity. The dimensions of the cavity were
4 in. (10.16 cm) wide, 6 in. (15.24 cm) long, and 1.38 in. (3.51 cm) deep.
Samples of PH 14-8 Mo were explosively formed in the die at both room temper-
ature and at -320°F (78°K). Tensile specimens of the type shown in Figure 1
were then made from the strained material. These were aged one hour at 900°F
(756°K) and tested to failure at room temperature.

Procedures: Room temperature straining: The straining blanks used in the room
temperature high energy rate straining tests were 8.5 in. (21.6 cm) x 12 in.
(30.48 cm) x t. The standard grid pattern was applied to one surface of each
blank.

The sequence of operations for forming the PH 14-8 Mo sheet at room temper-
ature was:

1. The blank was placed in position over the die cavity, with the
gridded side of the blank facing the bottom of the die cavity.

2. A rectangular holding plate, with a rectangular opening having
the same peripheral dimensions as the die cavity, was placed on
the blank and bolted to the die, as shown in Figure 36. Each
holddown bolt was torqued to 500 in.-1b (56.6 joules).

3. A 325 grain (0.020 kg), hemispherically shaped charge of A3 explo-
sive (937 RDX, 77 wax) was positioned over the geometric center of
the blank. Cardboard supports were used to hold the charge in
position at the established standoff distance, 4.5 in. (11.4 cm)
above the surface of the blank (Figure 36).

" 4, The die, blank, and charge assembly was then lowered into the form-—
ing pool, the die cavity was evacuated, and the charge was deto-
nated. The assembly was then removed from the pool, inspected,
and the bolts were checked and retightened if necessary. Another
325 grain (0.020 kg) charge was then installed at the same stand-
off distance as the first. Then, after the assembly had been
submerged in the pool and the die cavity evacuated, the charge
was detonated.

As shown in Figure 37 the two-shot forming sequence was necessary to strain
the material properly. Even so, cracking did occur at the corners. However,
the stock from which the tensile specimens were made (the material in contact
with the flat bottom of the die cavity) did strain uniformly in the long [6 in.
(15.24 cm)] direction.
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The same die and holddown plate used in the room temperature straining op-
erations were used to strain the PH 14-8 Mo sheet at -320°F (78°K). However,
it was necessary to use a straining blank 12 inches (30.5 cm) square to get the
material to draw properly. It was also necessary to increase the torque on the
holddown bolts to 100 ft-1b (136 joules) to prevent excessive buckling of the
flange material. And, to get reliable detonation of the blasting caps and ex-
plosive charges, it was necessary to insulate them from the LN, in which they
were immersed. Since the insulation decreased the efficiency of the charge,
it was necessary to use larger charges for both shots. The size of the charge
for first shots were increased to 1100 grains (0.066 kg) of A3 explosive, and
for second shots a 900 grain (0.054 kg) charge was used. A 4.5 in. (11.4 cm)
standoff distance was used for both shots.

Immersion of the die in LN, was impractical and unnecessary. The method
used is shown in Figures 38 and 39. An expendable styrofoam cylinder was at-
tached to the die to form an open-top container above the PH 14-8 Mo blank.

LN, was fed into the container from a shielded pressurized dewar until the
explosive charge was submerged in LN,. The flow of LN, was maintained until
rapid boiloff stopped. The LN, supply hose was then removed and the charge was
detonated.

Specimens of the type shown in Figure 1 were made from the strained blanks.
These were aged for one hour at 900°F (756°K) and then tensile tested to fail-
ure at room temperature.

COMPRESSION TESTS

Purpose: This series of tests was conducted to determine how the room tempera-
ture compressive yield strength of the PH 14-8 Mo annealed sheet material was
affected when the material was prestrained in uniform uniaxial tension at
-320°F (78°K) or at room temperature,

Approach: The test schedule for the Task VIII compression test series is shown
in Table 15. One hundred twenty-eight straining blanks of the type shown in
Figure 40 were strained, 64 at room temperature and 64 at -320°F (780K). After
being strained, 40 of the blanks were made into tensile specimens of type shown
in Figure 1. The remaining blanks were made into compression specimens of the
type shown in Figure 41. Two compression specimens were made from the gage
section of each of these strained blanks. Corresponding tensile and compres-
sion specimens were aged together according to the schedule (Table 15), except
when, as noted in Table 15, tensile data from the Task VI Parent Metal Test
series were used for comparison. After aging, the specimens were tested at
room temperature. The tensilé tests were conducted in accordance with the
provisions and requirements o6f ASTM-E8-69. The compression tests were con-
ducted in accordance with the provisions and requirements of ASTM-E9-69. A
Montgomery-Templin compression fixture, subpress and a Wiedemann Machine Co.
compressometer, Model PC-5M were used to conduct the compression tests.

In addition to testing the strained specimens, tensile and compression
specimens, made from the PH 14-8 Mo sheet that had been heat treated to the
SRH 950 and SRH 1050 conditions were tested as indicated in Table 15.
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Table 15, Test Schedule, Task VIII Compression Tests
Straining Aging Number of Specimens Tested
Temperature Leve] Temperature Time Compression Tension
o | % % °F | % hr | Long | Trans | Long | Trans
RT RT 900 | 756 1 4 4 * *
RT RT 900 | 756 8 4 4 2 2
RT RT Unaged --- 4 4 * *
RT RT 15 900 | 756 1 4 4 * *
RT RT 15 900 | 756 8 4 4 2 2
RT RT 15 Unaged --- 4 4 * *
RT RT © 950 | 783 1 4 4 2 2
RT RT 950 | 783 8 4 4 2 2
RT RT 15 950 | 783 1 4 4 2 2
RT RT 15 950 | 783 8 4 4 2 2
-320| 78 900 | 756 1 4 4 * *
-320] 78 900 | 756 8 4 4 2 2
-320| 78 Unaged . 4 4 * *
-320| 78 15 900 | 756 1 4 4 * *
-320 ¢ 78 15 900 | 756 8 4 4 2 2
-320| 78 15 Unaged -—- 4 4 * *
-320| 78 8 950 | 783 1 4 4 2 2
-320| 78 8 950 | 783 8 4 4 2 2
-320| 78 15 950 | 783 1 4 4 2 2
-320 78 15 950 | 783 8 4 4 2 2
SRH 950 N/A | N/A N/A 4 4 2 2
SRH 1050 N/A | N/A N/A 4 4 2 2

* Data from

pari

son.

Task VI Parent Metal

Test Series to be used for com-
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V. RESULTS AND DISCUSSION

TASK VI - SELECTION OF A PROMISING ALLOY

Synopsis

Task VI was conducted to develop data by which to compare the three
alloys tested with respect to chahges in room temperature tensile properties
induced by straining at -320° (78°K). The prime objective of the task was to
determine through comparative evaluation of the test results, the alloy that
should be tested in Tasks VII and VIII. PH 14-8 Mo was chosen for that pur-
pose.

Actually Task VI test results indicated that all three alloys were
worthy candidates for continued cryostraining tests. However, based on over-
all performance, PH 14-8 Mo offered slight advantages over each of the other
alloys. From the results of the parent metal test series it was learned that
PH 14-8 Mo developed slightly higher tensile strengths for equal prestrains
than 17-7 PH. Also, while developing somewhat lower strengths than PH 15-7
Mo for equal prestrains, PH 14-8 Mo did not exhibit the tendency for premature
brittle fracture during tensile testing as did PH 15-7 Mo. Additionally, the
weldment test results indicated that, as~welded, PH 14-8 Mo has a higher
uniform strain capability than PH 15-7 Mo at -320°F (78°K). And, while 17-7
PH and PH 14-8 Mo have equal uniform strain capability, as-welded at -320°F
(78°K), the 17-7 PH specimens prestrained at -320°F (78°K) tended to fail
prematurely during tensile test. PH 14-8 Mo did not demonstrate the same
tendency.

Based on overall performance, PH 14~8 Mo was chosen for testing in Tasks
VII and VIII.

Parent Metal Tests

Results: Uniform strain capability (USC) values:

Each alloy had been procured in sheet form, 0.050 in. (0.127 cm) thick,
Condition A. Twelve specimens of the type shown in Figure 18 were made from
each alloy, six longitudinal, and six long transverse. Three of the longi-
tudinal and three of the long transverse specimens of each alloy were tensile
tested to failure at room temperature. The remaining specimens of each alloy
were similarly tested at -3200F (789K). The properties obtained from these
tests were: wultimate tensile strength, total elongation (Figure 4) in 2 inches
(5.08 cm), and uniform elongation (Figure 4) in 1 inch (2.54 cm). The uniform
elongations for each set of three specimens representative of an alloy, grain
direction, and test temperature, were averaged.

These average elongation values were designated as uniform strain capa-

bility (USC) wvalues. The USC values established for each alloy are listed in
Table 16.
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Table

16 - USC Values, Task VI, Parent Metal Tests

Uniform strain

*Grain Temp
Alloy direction | °F (°K) capability
PH 14-8 Mo L RT 25.0
PH 14-8 Mo T RT 25.0
PH 14-8 Mo - L -320 (78) 20.0
PH 14-8 Mo T -320 (78) 21.0
PH 15-7 Mo L RT 36.0
PH 15-7 Mo T RT 36.0
PH 15-7 Mo L -320 (78) 22.0
PH 15-7 Mo T -320 (78) 22.0
17-7 PH L RT 48.0
17-7 PH T RT 48.0
17-7 PH L -320 (78) 25.0
17-7 PH T -320 (78) 20.0

* = Longitudinal; T = Long Transverse.




Strain Levels

The USC values were used to compute the strain levels for each alloy, as
described in Table 6. The strain levels established in this manner for each
alloy are listed in Table 17.

Table-17 - Strain Levels, Task VI, Parent Metal Tests

Strain levels, %

Straining
AlToy temperature A B ¢ D

PH 14-8 Mo| Room temp, | 8.0 | 8.5[12.012.5|15.0] 16.0] 18.0] 19.0
and -3200F
(78%K)

PH 15-7 Mo| Room temp 8.0 | 9.0113.0}13.0}16.5] 16.5 20.0| 20.0
and -3200F
(789K)

17-7 PH Room temp 10.0 | 8.0 115.0|12.0/119.0| 15.0} 22.01} 18.0
and -3200F
(789K)

Room Temperature Tensile Tests of Prestrained Specimens

Room temperature tensile tests were conducted on specimens of each alloy
that were prepared and conditioned as indicated in Table 7. The results of
these tests are summarized in Figures 42 through 62 and are compiled in
Tables 32 thru 34 of the appendix.

Discussion: The parent metal series results confirmed that both PH 15-7 Mo
and 17-7 PH, like PH 14-8 Mo, developed significantly higher room temperature
tensile strengths when strained at -320°F (780K) than they did when strained
an equal amount at room temperature.

Figures 42 through 50 show the longitudinal and transverse room temperature
tensile properties of the three alloys after having been strained at room tem-
perature or -320°F. (78°K) and then aged ome hour at 900°F (756°K). Two signif-
icant facts are evidenced in these plots: first, straining at -320°F (78°K) is
a much more effective means of strengthening each of the alloys than is room
temperature straining; second, the room temperature tensile properties devel-
oped by each alloy are nearly the same in the longitudinal and long transverse
directions. None of the alloys is shown to be significantly anisotropic. All
three alloys developed essentially equivalent room temperature tensile prop-
erties.
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Figure 42 Room Temperature Ultimate Tensile Strengths, Prestrained PH
14-8 Mo, Aged One Hour at 900°F (756°K)
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Figure 43 Room Temperature Tensile Yield Strength of Prestrained PH
14-8 Mo Aged One Hour at 900°F (756°K)
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Figure 44 Room Temperature Elongations of grestraaned

PH 14-8 Mo, Aged One Hour at 900°F (756 K)
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Figure 45 Room Temperature Ultimate Tensile Strengths
of grestragned PH 15-7 Mo, Aged One Hour at
900°F (756 K)
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Figure 46 Room Temperature Tensile Yield Strengths of Prestrained PH
15-7 Mo, Aged One Hour at 900°F (756°K)
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Figure 47 Room Temperature Elongations of Prestrained PH 15-7 Mo,
Aged One Hour at 900°F (756°K)
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Figure 48 Room Temperature Ultimate Tensile Strengtgs of o
Prestrained 17-7 PH, Aged One Hour at 900°F (756 K)
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Figure 49 Room Temperature Tensile Yield Strengths of Prestrained 17-7
PH, Aged One Hour at 900°F (756°K)
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One Hour at 9000F (7560K).
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Figures 51 through 56 provide a comparison of the room temperature tensile
properties, both longitudinal and transverse, of each alloy after straining
at —3209F (789K), and after straining at ~3209F (789K) and aging one-hour at
9009F (7560K). The significant strengthening of each alloy that is achieved
by the simple aging treatment is clearly indicated in these figures. However,
the aging treatment also serves to temper the strain-transformed martensite,
as noted previously in Chapter III. The tempering effect of the aging treatment
toughens each of the alloys. This effect is indicated by comparing the results
of the tensile tests of as-strained, and strained and aged specimens of each
alloy, Tables 32 thru 34. As noted in the Tables, some as-strained specimens
of each alloy, generally the more highly strained specimens, fractured before
a stress equal to the 0.27% offset yield strength was reached. Specimens of PH
15-7 Mo were more susceptible, with 13 specimens, three strained only to level
B, failing in this manner. Three specimens of 17-7 PH, all strained to the C
or D levels failed in this manner. Only two PH 14-8 Mo specimens failed in
this way, both transverse and prestrained to level D at -320°F (78°K). By
comparison, this type of brittle fracture was not observed in any aged PH 14-8
Mo or 17-7 PH specimens, regardless of strain level. However, while aging
did eliminate the tendency for such failure in the PH 15-7 Mo specimens
strained to levels A and B, four aged specimens that had been strained to the
C or D levels at -320°F (78°K) did fracture at a stress lower than 0.2%
offset yield strength. Therefore, the results indicate that the aging treat~
ment tempered and toughened the prestrained specimens of each alloy.

The room temperature tensile properties in both the longitudinal and long
transverse directions developed by the three alloys through straining at -320°F
(78°K) and aging at 9009F (756°K) for one-hour are compared in Figures 57
through 62. All of the alloys developed strengths above 300 000 psi (207 000
N/em?) in both grain directions. However, elongations were correspondingly re-
duced to 2.07% or less.

Although PH 15-7 Mo was shown to develop somewhat higher strengths for
equal strains than either PH 14-8 Mo or 17-7 PH, PH 14-8 Mo was chosen for
testing in Task VII rather than PH 15-7 Mo because of the indicated tendency
of the PH 15~7 Mo specimens for brittle fracture even after aging. PH 14-8 Mo
was chosen over 17-7 PH because for equal strains PH 14-8 Mo developed
slightly higher strengths.

Weldment Tests

Results: One weld panel (Figure 21) was prepared from representative stock of
each alloy. The panels were penetrant inspected, X-ray inspected, and visually
inspected. Except for a small amount of localized porosity in the PH 15-7 Mo
panel, none of the inspections disclosed any significant or rejectable sized
defects. Even the porosity in the PH 15-7 Mo panel was no problem. The poros-
ity was confined to a 4-inch (10.2-cm) length of weld at one edge of the panel
(the start location). Therefore, it was possible to discard the unsound por-
tion of the panel and still obtain the necessary specimens from the remainder
of the panel.
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Figure 55 Room Temperature Longitudinal Tensile Properties of 17-7 PH Pre-
strained at -320°F (78°K), As-Prestrained vs Prestrained and Aged
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Figure 56 Room Temperature Transverse Tensile Properties of 17-7 PH Prestrained
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Alloys Prestrained at -320°F (78°K) and Aged One Hour at 900°F (756°K).
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Figure 59 Room Temperature Longitudinal Elongations of
Three Alloys Prestrained at -3200F (7809K) and
Aged One Hour at 9000F (7569K).
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Figure 60 Room Temperature Transverse Ultimate Tensile Strengths of Three
Alloys Prestrained at -320°F (78°K) and Aged One Hour at 900°F (756°K).
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Figure 61 Room Temperature Transverse Yield Strengths of Three Alloys Pre-
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Fig. 62 Room Temperature Transverse Elongations
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and Aged One Hour at 9000F (7560K).
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As indicated in the weldment test schedule, Table 8, three welded specimens
of each alloy were tested to failure at room temperature and three at -320°F

(789K). The results of these tests are listed in Table 18.

The uniform elon-

gations measured on the specimens tested at -3209F (789°K) were used to estab-
lish the USC value for the weldments of each alloy, these in turn were used to
calculate the Level E target strain values listed in Table 19.

Table 18 Test Results, Tensile Tests of Weldments at Room Temperature

and -320°F (78°K)

Test Ultimate .
. Total elongation
Specimen v‘temp tensile strength % in 2 1in.
Alloy No. OF | OK psi N/cm?2 (5.08 cm)

PH 14-8 Mo | 12LWT-1 [RT RT 1133 900 | 92 300 --

-3 [RT RT {132 300 | 91 200 24.5

-5 IRT RT {133 100 | 91 800 25.0

-2 |-320| 78 {292 800 | 201 900 21.0

-4 {-320| 78 |274 300 | 189 100 14.5

-6 [-320| 78 {292 800 | 201 900 21.5
PH 15-7 Mo | 22LWT-1 |RT RT {134 400 | 92 700 36.0

-3 |RT RT {134 400 | 92 700 34.5

-5 |RT RT | 132 500 | 91 400 -35.0

-2 |-320| 78 {202 400 | 139 600 10.0

-4 |-320| 78 | 234 300 | 161 500 11.0

-6 |{-320| 78 [ 220 800 [ 152 200 10.0
17-7 PH 32LWT-1 |RT RT [ 120 000 [ 82 700 41.0

-3 |RT RT | 120 800 | 83 300 40.5

-5 |RT RT | 122 400 |- 84 400 42.5

-2 |-320] 78 | 232 800 | 160 500 14.5

-4 |-320| 78 | 244 000 | 168 200 17.0

-6 |-320] 78 | 236800 | 163 300 15.5

Table 19 USC and Strain Level Values, Task VI, Weldment Tests

Strain level E (%)

[60% of USC at -320°F (78°K) ]

Usc (%)
Alloy Minimum uniform elongation
at -320°F (78°K), % in' 1 inch (2.54 cm)
PH 14-8 Mo : 14.0
PH 15-7 Mo 9.0
17-7 PH 14.0

8.0
5.0
8.0

Other specimens prepared from the weld panels were conditioned and tested
as specified in Table 8. The results of these tests are listed in Tables 20

through 22.
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Discussion: The weldment tests were conducted to develop data by which
to compare the uniform strain capability, at -320°F (78°K), of the three
alloys in the as-welded condition. Also, to determine how the room tempera-
ture tensile properties of each alloy are affected when:

a) Strained at room temperature and then aged one hour at 900°F (756°K),
b) Strained at ~320°F (78°K) and then aged one hour at 900°F (756°K).

PH 14-8 Mo and 17-7 PH, as-welded, had equal uniform strain capability

at -320°F (78°K); 14%. The corresponding uniform strain capability for PH
15-7 Mo is 97%. ‘

The PH 14-8 Mo specimens were inadvertently strained lesser amounts at
both room temperature and -320°F (78°K) than were the 17-7 PH specimens. How-
ever, the room temperature tensile strengths of the prestrained and aged PH
14-8 Mo specimens were found to be greater than the strengths of comparably
conditioned 17-7 PH specimens. Also, the as-welded 17-7 PH specimens strained
at —-320°F (78°K) and then aged tended to fail at a stress level less than that
equivalent to the 0.2% offset yield strength.

Compared on the basis of the results of the weldment tests, PH 14-8 Mo
was judged the better of the three alloys.

Higher Strain Rate Tests

Results: As indicated in the higher strain rate test schedule, Table 9,
three specimens of each alloy were tensile tested to failure at room temper-
ature and three at —-3200F (78YK). These were tested at a strain rate of 1.5
in./in./min (1.5 em/cm/min). The uniform elongations measured on the specimens
tested at -320°F (78°K) were used to establish a high strain rate minimum USC
for each alloy. The USC values were then used to calculate two strain levels
for each alloy, levels X and Y, which were 50% and 75%, respectively, of an al-"
loy's USC at ~-320°F (78°K). The results of these tests are listed in Table 23.

Room temperature tensile tests were conducted on other specimens of each
alloy that had been conditioned as specified in Table 9. The results of these
tests are given in Table 24.

Discussion: In Table 25 the tensile properties developed by the three
alloys through straining at room temperature and -320°F (78°K) and aging one
hour at 9000F (7560K) are compared for standard and high strain rates. No
significant advantage with respect to total strengthening capability is indi-
cated for either strain rate.
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Table 20 Weld Test Results: -PH 14-8 Mo

Room temperature tensile
. . properties
is;g;x:en Strain data Measured UTtimate strength Yield strength, E](_Jngatjon
Temp, | Level | Target,| prestrain, 0.2. offset %51882 1?'
°F psi N/cm? psi N/ cm? <08 cm
*12LUS - RT E 8.0 10.0 161 800 | 111 600 126 500] 87 200 20.5
- RT 8.0 10.0 161 800 | 111 600 127 100} 87 600 20.0
- RT E 8.0 10.0 161 800 § 111 600 135 300) 93 300 20.0
*12LWS - 2 -320 E 8.0 7.5 261 100 { 180 000 237 700|163 900 4.5
- -320 E 8.0 7.5 255 400 | 176 100 217 100 {149 700 4.0
- -320 E 8.0 7.5 256 100 | 176 600 213 900|147 500 4.5
*Al1 specimens aged 1 hour at 900°F (756°K).
Table 21 Weld Test Results: PH 15-7 Mo
Room temperature tensile
properties
Specimen Strain data Ultimate strength | Yield strength, E19ngatjon
Number Measured 0.2% offset % in 2 in.
Temp, | Level | Target, | prestrain, (5.08 cm)
o 3 % psi N/cm? psi N/ cm?2
*22LWS - 1 RT E 5.0 5.0 138 800 { 95 700. - - 57.5
-3 RT E 5.0 5.0 141 700 | 97 700 101 100 | 69 700 32.0
-5 RT E 5.0 5.0 143 300 { 98 800 104 200 | 71 800 36.5
*22LWS - 2 -320 E 5.0 5.0 155 100 }106 900 94 600 | 65 200 6.0
- -320 E 5.0 5.0 154 100 1106 300 91 900 § 63 400 7.0
- -320 5.0 5.0 154 100 106 300 91 900 | 63 400 6.0

*A11 specimens aged 1 hour at 900°F (756°K).
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Table 22 Weld Test Results:

17-7 PH

- Room temperature tensile
properties
Ultimate strength | Yield strength, | Elongation
Specimen Strain data 0.2% offset % in 2 in.
number Measured (5.08 cm).
Temp, Level Target, jprestrain,
°F % % psi N/cm? psi N/ cm?
32LWS -1 RT 8.0 11.0 132 700 | 91 500 102 400 70 600 37.5
-2 RT 8.0 11.0 135 200 |} 93 200 105 800 ] 72 900 34.0
-5 RT 8.0 11.0 140 600 9A6 900 109 400 | 75 400 32.0
32LHS - 2 -320 E 8.0 9.0 - - - - -
- 45 -320 E 8.0 9.0 211 200 [145 600 - - 1.5
-6 -320 E 8.0 9.0 202 700 |139 800 - - 1.5
%*
LA11 specimens aged 1 hour at 900°F {756°K).
Failed out of gage
Failed before 0.2% offset.
Table 23 High Strain Rate Tensile Tests
Tensile properties
. Test UsC
Specimen Strain rate temp Ultimate tensile strength Elongation atO
No. N -3200F
in./in./min | cm/en/min | OF | Ok psi Vem Ly 2 e (508 cm) |2 n 111':.??.'54 em) |(78%0)
{PH 14-8 Mo)
11LRH-1 1.50 1.50 RT RT 121 600 83 800 31.0 26.0
-2 1.50 1.50 RT RT 122 400 84 400 30.0 26.0
-3 1.50 1.50 RT RT 123 200 84 500 30.0 25.0
11LNH-1 1.50 1.50 -320 | 78 283 200 195 300 19.0 18.0 18.0
-2 1.50 1.50 -320 | 78 290 400 200 200 20.5 19.5
-3 1.50 1.50 -320 | 78 291 200 200 800 21.0 19.5
(PH 15-7 Mo)
21LRH-1 1.50 1.50 RT RT 114 600 79 000 36.0 30.0
-2 1.50 1.50 RT RT 115 400 79 600 35.0 32.0
-3 1.50 1.50 RT RT 114 600 79 000 36.0 34.0
21LNH-1 1.50 1.50 -320 | 78 293 700 202 500 20.5 18.5 18.0
-2 1.50 1.50 -320 | 78 293 300 202 200 21.7 20.0 :
-3 1.50 1,50 -320 | 78 (Failed out of gage)
(17-7 PH)
31LRH-1 1.50 1.50 RT RT 107 200 73 900 48.0 42.0
-2 1.50 1.50 RT RT 105 600 72 800 45.0 37.0
-3 1.50 1.50 RT RT 106 400 73 400 46.0 38.0
31LNH-1 1.50 1.50 =320 | 78 (Failed out of gage) --- ---
-2 1.50 1.50 -320 | 78 276 000 190 300 24.0 20.5 20.0
-3 1.50 1.50 -320 | 78 280 000 193 000 25.0 23.0
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Table 24 Task VI High Strain Rate Test Results

prestrai Prestrain (%) Room temperature tensile propertiesa
Strain restrain j j i i .
Aoy Tevel oiempOK Target [ Actual UH"SH::Zn;:ESHe strezgzzizg.&elgfset) ilgrggaztm
psi N/cm: © opsi "emd (5.08 cm)
PH 14-8 Mo Xb RT RT 9.0 8.0 | 144 800 | 99 800 89 700 61 800 18.0
ve RT RT 13.0 13.0 | 145 800 | 100 500 104 600 72 100 16.0
X: aged®*® {RT |RT | 9.0 8.5 | 147 800 | 101 900 | 109 400 75 400 23.0
Y: agedc’e RT °7T 1 13.0 13.0 | 160 700 {110 800 140 400 96 800 19.5
X -320 | 78 9.0 9.0 | 214 270 | 147 800 165 500 114 100 8.0
Y -320| 78 | 13.0 13.0 | 234 600 161 800 217 700 150 100 7.0
X: agede -320| 78 9.0 9.0 | 275 400 | 189 900 259 600 179 000 4.5
Y: agede -320178 | 13.0 13.0 | 314 900 | 217 100 305 200 210 400 2.0
PH 15-7 Mg} X RT RT 9.0 8.5 142 400 | 98 200 94 400 65 100 30.0
Y RT RT 13.0 12.0 140 600 | 96 900 95 700 66 000 26.5
X: agede RT RT 9.0 9.0 | 145 500 {100 300 110 200 76 000 35.0
Y: agede RT RT | 13.0 12.0 | 151 000 | 104 100 127 700 88 000 28.5
Xd -320178 9.0 9.5 | 232 700 | 160 400 218 400 150 600 6.5
y© -320}178 | 13.0 14.0 | 229 000 {157 900 185 000 127 600 7.0
X: agedd’e -320178 9.0 10.0 | 291 700 | 201 100 278 600 192 100 4.5
Y: agedb’e -320]78 | 13.0 12.0 | 293 800 | 202 600 279 400 192 600 5.5
17-7 PH X RT RT 10.0 9.0 121 800 | 84 000 75 300 51 900 33.5
Y RT RT 15.0 14.0 | 133 600 | 92 100 96 800 66 700 33.5
X: aged® RT RT | 10.0 10.0 | 129 200 | 89 100 92 800 64 000 39.0
Y agede RT RT | 15.0 14.5 | 134 500 | 92 700 109 100 75 200 38.E
X -320|78 | 10.0 11.0 | 220 600 | 152 100 183 600 126 200 7.5
Y -320178 | 15.0 15.0 | 238 800 | 164 700 228 000 157 200 5.5
X: agede -3201 78 | 10.0 10.5 | 260 800 | 179 800 228 500 157 600 9.0
v: aged®*®|-320|78 | 15.0 | 14.5 | 300 700 {207 300 | 290 600 | 200 400 2.5

bOne test.

CAverage of four tests.

aAverage of three tests unless noted.

dAverage of four tests.

®aged 1 hour at 900°F (756°K),

air cooled.

Table 25 Comparison of Properties Developed by Standard and High Strain Rates, A1l Specimens Aged 1 Hour
at 900°F (756°K) after Straining

Alloy Prestrain Actual Strain rate Room temperature tensile properties
temp strain, % [T 7; : " : ; p
in./in./min | cm/cm/min Ultimate Yield Elongation
) 3 N 5 1% in 2 in.
of oK psi N/cm psi N/cm (5.08 cm)
PH 14-8 Mo | RT RT 8.0 0.050 0.050 154 400 106 500 | 109 900 | 75 800 23.5
RT RT 12.0 0.050 0.050 162 800 | 112 300 { 145 800 |100 500 21.5
RT RT 9.0 1.5 1.5 147 800 {101 900 | 109 400 | 75 400 23,0
RT RT 13.0 1.5 1.5 160 700 {110 800 | 140 400 | 96 800 19.5
-320 | 78 9.0 0.050 0.050 253 700 |174 900 | 200 100 1138 000 11.5
-320 | 78 14.5 0.050 0.050 324 100 |223 500 | 321 700 {221 800 2.0
-320 | 78 9.0 1.5 1.5 275 400 | 189 900 | 259 600 |179 000 4.5
-320 | 78 13.0 1.5 1.5 314 900 {217 100 | 305 200 |210 400 2.0
PH 15-7 Mo | RT RT 9.0 0.050 0.050 147 100 | 101 400 | 114 700 | 79 100 34.0
RT RT 13.0 0.050 0.050 160 200 [ 110 500 | 141 100 | 97 300 29.0
RT RT 9.0 1.5 1.5 145 500 {100 300 | 110 200 | 76 000 35.0
RT RT 12.0 1.5 1.5 151 000 |104 100 | 127 700 | 88 000 28.5
-320 | 78 7.0 0.050 0.050 252200 {172 900 | 206 300 |142 200 11.5
-320 | 78 13.0 0.050 0.050 328 300 | 226 400 | 323 600 |223 100 2,0
-320 | 78 9.5 1.5 1.5 291 700 | 201 100 | 278 600 {192 100 4.5
-320 | 78 14,0 1.5 1.5 293 800 |202 600 | 279 400 |192 600 5.5
17-7 PH RT RT 10.0 0.050 0.050 131 400 | 90 600 | 90 000 | 62 100 44.5
RT RT 15.0 0.050 0.050 138 800 | 95 700 | 111 200 | 76 700 37.5
RT RT 10.0 1.5 1.5 129 200 | 89 100| 92 800 | 64 000 39.0
RT RT 14.5 1.5 1.5 134 500 [ 92 700 | 109 100 | 75 200 38.5
-320 | 78 9.5 0.050 0.050 256 100 {176 600 | 214 600 |148 000 12.5
-320 | 78 15,0 0.050 0.050 319 000 {220 000 | 308 600 |212 800 2.0
-320 | 78 10.5 1.5 1.5 260 800 |179 800 | 228 500 |157 600 9.0
-320 | 78 14,5 1.5 1.5 300 700 [207 300 | 290 600 {200 400 2.5




Roll Straining Tests

Results: Specimens of each alloy were rolled at room temperature and
others at -320°F (78°K). Tensile test bars of the type shown in Figure 1 were
made from the rolled materials. For each alloy, three tensile specimens made
from room temperature rolled stock and three tensile specimens made from -320°F
(78°K) rolled stock, were tested to failure at room temperature in the as-
rolled condition. Like quantities of similarly conditioned specimens of each
alloy were aged at 900°F (756°K) for one hour and then tested to failure at
room temperature. The results of these tests are listed in Table 26.

As shown in Table 26, PH 15-7 Mo developed higher room temperature temnsile
strengths through cryorolling or cryorolling and aging than either PH 14-8 Mo
or 17-7 PH. The difference is most marked in the yield strengths; PH 15-7 Mo
developed a yield strength of 309 500 psi (213 400 N/cm?), a value approxi-
mately 97 greater than yield strengths developed by PH 14-8 Mo and 17-7 PH.
However, PH 14-8 Mo developed higher strengths, as-rolled or rolled and aged,
when the rolling was done at room temperature.

The rolling tests confirmed that cryoworking, regardless of whether by

cryostraining in uniaxial tensile or by cryorolling, is an effective means of
strengthening each of the alloys tested.

Table 26 Test Results, Task VI Rol1-Strain Tests

T

! Room temperature tensile properties® ;
. s i e Tensile yield !
Aloy 52:1“8%_{ Final condition |V ””:f;gnﬁfs']e strength, 0.2% {Elongation, :
P “renge: offset % in 2 in. |
psi N/cm2 psi N/ cm? (5.08 cm) ;
PH 14-8 Mo] Room temp | As rolled,’ 155 000 | 106 900 | 122 100 | 84 200 |  21.0 |

Rolled®+aged®>® | 156 800 | 108 100 | 139 100 | 95 900 |  22.0
-320 As rolled® | 256 500 ; 176 800 | 204 400 |140 900 2.0 |
Rolled+aged®*® | 307 500 ; 212 000 : 283 000 |195 100 2.0 |
PH 15-7 Mo] Room temp | As rolled® | 146 100 {100 700 ' 103 400 | 71 300 | 21.5
§ Rolled+aged®*® | 165 100 | 113 800 | 116 200 | 80 100 | 26.5
! ; Z _ %

£-320 i As rolled” 1 261 400 | 180 200 | 235 900 | 162 700 .0
g | Rolled+aged®”® | 318 800 | 219 800 | 309 500 | 213 400 2.0 ;
17-7 PH iRoom temp; As rolled® 1130 000! 89 600 85 300 | 58 800 | 27.5
: Rolled+aged®*C | 140 500 96 900 | 106 300 | 73 300 | 33.0
1320 | As rolled® 251 600 ' 173 500 | 208 000 | 143 400 5
; Rolledtaged®>C | 303 500 | 209 300 | 283 600 | 195 500 2.5
: %average of three tests. ’
PMaterial thickness reduced from 0.050 in. (0.127 cm) to 0.043 in. (0.109 cm).
CAged 1 hour at 900°F (756 OK). ?
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TASK VI - CONCLUSION

PH 14-8 Mo was chosen for testing in Tasks VII and VIII. It was chosen
primarily because, as previously discussed, it produced better results than
the other alloys during the weld test series. Also, the results of the parent
metal test series indicated that it developed slightly higher strengths for
equal strains than 17-7 PH, and, although developing lower strengths than
PH 15~7 Mo, PH 14-8 Mo demonstrated superior toughness than that alloy :both
after and before aging. Actually all three alloys showed good response to
cryostraining and none offered marked advantage over the others. But, PH 14-8

Mo was shown to be slightly better than each of the others in some respects,
therefore it was chosen for further testing.
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TASK VIT - THERMAL RESPONSE TESTS

Results: The Task VII test results are listed in Table 35 of Appendix A. Con-
stant temperature aging curves developed from these data are shown in Figures
63 through 65.

Discussion: These tests were conducted in accordance with the test schedule,
Table 12, to determine how various time~temperature aging cycles affect the
room temperature tensile properties developed by cryostrained PH 14~8 Mo.

Aging the cryostrained PH 14-8 Mo for 0.5 hour at 1100°F (866°K) produced
comparatively poor room temperature tensile properties (Table 35), regardless
of the strain level.

Aging the cryostrained PH 14-8 Mo at 1000°F (811°K) also produced compara-
tively poor results, as indicated in Figures 63, 64 and 65. The data indicate
that aging at 1100°F (866°K) or 1000°F (811°K) results in overaging cryostrained
PH 14-8 Mo material, even if aging time is limited to 0.5 hour. The room tem—
perature tensile strengths developed by aging cryostrained PH 14-8 Mo at these
temperatures are low compared to the strengths developed by equivalently cryo-
strained material aged at lower temperatures. Also, while the tensile strengths
developed through aging the cryostrained material at 1000°F (811°K) and 1100°F
(866°K) are relatively low, elongations of the aged material do not improve
correspondingly. ‘

As indicated in Figures 63, 64, and 65 aging cryostrained PH 14-8 Mo at
800°F (700°K), 900°F (756°K), or 950°F (783°K) will produce essentially equal
tensile properties for a given cryostrained condition, provided aging time is
appropriately adjusted for temperature. Regardless of aging temperature,
strengths increase with increasing time at temperature until the maximum values
per cryostrain condition are reached, then increasing time at temperature pro-
duces lower strengths. By contrast, however, corresponding elongation values
remain relatively constant, showing no improvement with increased aging time.

Aging, as noted in Chapter III, serves a dual purpose of strengthening and
also tempering the martensitic structure of transformed PH 14-8 Mo. The temper-
ing effect, or more accurately the lack of tempering, was noted in testing the
16% cryostrained specimens after aging 0.5 and 1 hour at 800°F (700°K). All
four of these specimens fractured before 0.2% offset (0.004 inch [0.010 cm])
strain was reached, This brittle behavior suggests that the short aging periods
at the 800°F (700°K) temperature did not provide for adequate tempering of the
highly strained material,
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The secondary purpose of Task VII was to choose ten temperature-time aging
cycles for use in the Task VIII stress corrosion and toughness test series.

The aging cycles indicated in the following tabulation were selected for that
purpose. .

Time L Temperature
(hr) | 800°F (700°K) | 900°F (756°K) | 950°F (783°K)
1 X X X
2 X
4 X X X
8 X X X

TASK VIII - TOUGHNESS, STRESS CORROSION, HIGH ENERGY RATE
STRAINING, AND COMPRESSION TESTS

Toughness Tests

Results: Results of the edge-notched and center-cracked specimen tests are
listed in Table 27. Figure 66 is a plot of the notched-unnotched strength
ratios for both types of specimens vs aging time at the three aging tempera-
tures.

Digscussion: The data plotted in Figure 66 indicate that cryostrained PH 14-8
Mo aged at 950°F (783°K) develops better notched-unnotched strength ratios
than aging at 900°F (756°K) or at 800°F (700°K).

In Task VII it was found that essentially equal room temperature tensile
properties can be developed in cryostrained PH 14-8 Mo (for a given strain
level) by aging at any of the three temperatures, if aging time is appropriately
adjusted. Considering this with respect to the trend indicated in Figure 66,
800°F (700°K) is shown to be the least desirable aging temperature, since, by
comparison with aging at 900°F (756°K) or 950°F (783°K), aging at 800°F (700°K)
offers no improvement in tensile properties and relatively lower toughness. -
Similarly, aging at 900°F (756°K) is shown to be somewhat less effective than
aging at 950°F (783°K) with respect to relative toughness developed at a given
stfength level.

Stress Corrosion Tests

Results: Specimens of PH 14-8 Mo prepared as indicated in Table 14 were ex-
posed to a 3.5% aqueous NaC% solution on an alternating cycle of 10 minutes
immersed in the solution, 50 minutes out of solution. The test was terminated
at the completion of 523 cycles. ©None of the specimens developed stress cor-
rosion cracks.

Table 28 is a compilation of test results. As is indicated, specimens of
the normally heat treated PH 14~8 Mo, those in conditions SRH 950 or SRH 1050,
were more affected by the salt solution than the specimens of cryostrained
material or specimens tested in the room temperature strained or annealed con-
ditioms.
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Table 28 Test Results, Task VIII Stress Corrosion Tests

Specimen condition after 523 alternate immersion cycles, 10

minutes immersed in 3.5% NaCe solution, 50 minutes out
Specimen number

(Ref. Table 14) No ¥?gﬁt Light |Moderate | Heavy Sec?lgned
visible . uniform |uniform | uniform .
uniform metallographic
change rust rust rust rust examination
AA-1N-1 X
-2 X
-3 X X
AA-2N-1 X
-2 X
-3 X
AA-3N-1
-2 X
-3 X X
AA-4N-1 X
-2 X
-3 X
AA-5N-1 X
-2 X
-3 X
AA-6N-1 X
-2 X
-3 X X
AA-7N-1 X
-2 X
-3 X
AA-8N-1 X
-2 X
-3 X X
AA-9N-1 X
-2 X
-3 X X
AA-10N-1 X
-2 X
-3 X X
AA-11N-1 X
-2 X
-3 X X
AA-12N-1 X
-2 X
-3 X X
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Table 28 Test Results, Task VIII Stress Corrosion Tests - Continued

Specimen condition after 523 alternate immersion cycles, 10
minutes immersed in 3.5% NaC% solution, 50 minutes out
Specimen number .
(Ref. Table 14) No ¥$g%t Light | Moderate | Heavy Sec;;an
visible . uniform | uniform |uniform .
uniform metallographic
change rUS rust rust rust examination
AA-13N-1 X
-2 X
-3 X X
AA-14N-1 X
-2 X
-3 X X
AA-15N-1 X
-2 X
-3 X
AA-16N-1 X
-2 X
-3 X X
AA-17N-1 X
-2 X
-3 X
AA-18N-1 X
-2 X
-3 X X
AA-19N-1 X
-2 X
-3 X
AA-20N-1 X
) X
-3 X X
BB-1N-1 X
-2 X
-3 X X
BB-2N-1 X
-2 X
-3 X
BB-3N-1 X
~2 X
-3 X X
BB-4N-1 X
-2 X
-3 X
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Table 28 Test Results, Task VIII Stress Corrosion Tests ~ Continued

Specimen condition after 523 alternate immersion: cycles, 10
Specimen number minutes immersed in 3.5% NaCg sclution, 50 minutes out
(Ref. Table 14) No ¥$§%t Light |Moderate | Heavy Segé;on
visible ; uniform funiform {uniform ;
uniform metallographic
change rust rust rust rust examination
BB-5N-1 X
-2 X
-3 X X
BB-6N-1 X
-2 X
-3 X
BB-7N-1 X
-2 X
-3 X X
BB-8N-1 X
-2 X
-3 X
BB-9N-1 X
-2 X
-3 X X
BB-10N-1 X
-2 X
-3 X
BB-11N-1 X
-2 X
-3 X X
BB-12N-1 X
-2 X
-3 X
BB-13N-1 X
-2 X
-3 X X
BB-14N-1 X
-2 X
-3 X
BB-15N-1 X
-2 X
-3 X X
BB-16N-1 X
-2 X
-3 X
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Table 28 Test Results, Task VIII Stress Corrosion Tests - Continued

. 7 Specimen condition after 523 alternate immersion cycles, 10
Specimen number minutes immersed in 3.5% NaC2 solution, 50 minutes out
(Ref. Table 14) -Ng ¥$S%t nght Mo@eréte Hgavy Seﬁglon
: treneae [uniforn | nform | ntforn JuriForm | pecat tograpnic

g rust examination

BB-17N-1 X

-2 X

-3 X X
BB-18N-1 X

-2 X

-3 X
BB-19N-1 X

-2 X

-3 X X
BB-~20N Blank damaged in processing
XX-1
XX-2 X
XX-3 X
XX-4 X
XX-5 X
XX-6 X X
S9-1 X
$9-2 X
S9-3 X
S9-4 X
S9-5 X
S9-6 X X
S1-1 X
S1-2 X
S1-3 X
S1-4 X
S1-5 X
S1-6 X X
AA-1R-1 X

-2 X

-3 X X
AA-2R-1 X

-2 X

-3 X
BB-1R-1 X

-2 X

-3 X X
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Table 28 Test Results, Task VIII Stress Corrosion Tests - Concluded

Specimen cgndition’gfter 523 alternate immersion cycles, 10
Specimen number minutes immersed in 3.5% NaCs solution, 50 minutes out
| (Ref. | ' NN '
(Ref. Table 14) .Ng ¥$g%t Light | Moderate | Heavy. Se$t1on
v;s1b1e ani Feirn uniform | uniform | uniform meta]]g;raphic
change ;
g rust rust Pust PUSTE examination
BB-2R-1 X
-2 X
-3 X

Discussion: The results indicate that PH 14-8 Mo in the annealed, cryostrained
and aged, or room temperature strained and . aged conditions is more resistant
to corrosion by the 3.5% NaC% solution than PH 14-8 Mo in either the SRH 950 or
SRH 1050 conditions.

Figures 67, 68, and 69 are photomicrographs of sections through the most
highly stressed portions of specimens S1-6, S9-6 and BB-19N-3 (Ref. Table 14).
BB-19N-3 was representative of rusted cryostrained specimens, S1-6 and S59-6
were specimens of SRH 1050 and SRH 950 conditioned PH 14-8 Mo, respectively.

" All three had been stressed to 80% of their tensile yield strength when ex-
posed to the salt solution. Figures 68 and 69 show intergranular corrosion of
both the SRH 1050 and SRH 950 specimens, while there is no evidence of such
attack of the cryostrained material shown in Figure 67. Of the specimens ex-

amined metallographically only the SRH 1050 and SRH 950 specimens showed evi-
dence of intergranular attack.

Figure 67.

' Photomicrograph of a Section through
. the Highly Stressed Region of Specimen
. BB-19N-3.
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Figure 68.

Photomicrograph of a Section through
the Highly Stressed Region of Specimen
S1-6 Showing Intergranular Attack.

(500X)

Figure 69.

Photomicrograph of a Section through
the Highly Stressed Region of Specimen
$9-6 Showing Intergranular Attack.
(500X)

'
1

High Energy Rate Straining Tests

Results: The high energy rate straining test results are listed in Tables 29
and 30. Table 31 is a compilation of the room temperature tensile properties
developed by the PH 14-8 Mo sheet material through various methods of cryo-
working followed by aging one hour at 900°F (756°K). The values listed are
taken from tables 25, 26 and 30.

Discussion: The data in Table 31 indicate that higher strain rates do offer
some advantage with respect to the amount of strengthening achieved per unit
of strain. PH 14-8 when strained 6.0% by the explosive (high energy rate)
method developed almost the identical room temperature tensile properties it
developed when strained 9.0% at a rate of 1.5 in./in./minute in uniaxial ten-
sion. Also, when strained 9.0Z in uniaxial tension at a strain rate of 0.050
in./in./minute the yield strength developed by the PH 14-8 Mo was about 257
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less than its yield strength after being strained 9.07% at 1.5 in./in./minute.
Then, a comparison of the properties developed by the material strained 3.0%
by the high energy rate method and the material strained in uniaxial tension
at a rate of 0.050 ip./in./minute show a 7.07% higher yield strength for the
high energy rate strained material, and equivalent elongations. The data
indicate that cryostraining at higher strain rates results in the development
of higher room temperature tensile strengths per unit of strain compared with
the effects produced by straining at lower rates. However, elongation degrades
in correspondence with improvement in strength, regardless of the strain rate.
Thus, while the rate of strengthening apparently increases as strain rate in-
creases, the data indicate that the same total effect can be achieved regard-
less of strain rate by merely adjusting the total amount of strain to corre-
spond with the strain rate used and the strengthening desired.

Table 29 Room Temperature Tensile Properties of PH 14-8 Mo Prestrained
at Room Temperature by a High Energy Rate (Explosive) Method
and Aged One Hour at 900°F (756°K)

Room temperature tensile properties
.. a . .
d??glgion Pre%tra1n Ultimate strength Y1812%§§;$222h, Elongation,
bsi N/ cm2 psi Nemz | % in 2 in. (5.08 cm)

L 9.0 141 800 | 97 800 {131 800 | 90 900 18.5
L 9.5 147 300 { 101 600 [126 100 | 86 900 18.5
L 9.0 140 900 | 97 200 {122 700 | 84 600 17.5
L 9.5 150 900 | 104 000 |124 100 | 85 600 19.5
L 10.0 144 500 | 99 600 {118 200 | 81 500 20.5
L 10.5 139 100 | 95 900 {127 300 | 87 800 21.0
L 10.5 147 300 | 101 600 (139 100 | 95 900 20.5
L 9.0 140 900 | 97 200 - --- 23.0

Avg 144 100 | 99 400 [127 000 | 87 600 20.0
T 9.0 140 000 | 96 500 - --- 18.0
T 9.0 143 600 | 99 000 --- --- 18.5
T 9.0 135 200 { 93 200 {112 800 | 77 800 18.5
T 9.0 140 000 | 96 500 | 99 100 { 68 300 18.0
T 9.5 139 100 | 95 900 (133 900 | 92 300 17.5
T 9.5 147 300 | 101 600 {144 600 | 99 700 16.5

Avg 140 900 | 97 100 |122 600 | 84 500 18.0
T 1 13.0 266 100 | 183 500 (260 400 [ 179 500 5.5

Relative to mill rolling, L = Longitudinal, T = Long transverse.

134



Table 30 Room Temperature Tensile Properties of PH 14-8 Mo Prestrained
at -320°F (78°K) by a High Energy Rate (Explosive) Method and
Aged One Hour at 900°F (756°K)

Room temperature tensile properties
. a . .
d?:gggion Pres;ra1n Ultimate strength YTSTS%SE;$22€h’ ETongation,
bs N/ cm2 psi N/ cm? % in 2 in. (5.08 cm)
L 3. 239 100 | 164 900 | 216 500 | 149 300 11.0
L 3. 241 700 | 166 700 | 215 200 | 148 400 11.0
Avg 240 400 | 165 800 | 215 600 | 148 700 11.0
L 7.0 279 100 [ 192 400 | 268 300 185 000 4.5
L 6.0 280 900 { 193 700 | 269 600 | 185 900 3.5
L 6.0 267 000 | 184 100 | 243 500§ 167 900 5.5
L 6.0 279 100 | 192 400 | 258 700} 178 400 3.5
Avg 276 500 | 190 600 | 260 000 | 179 300 4.25
T 5.0 225 800 | 155 700 | 182 500} 125 800 10.0
T 5.0 225 000 | 155 100 | 183 300 126 500 10.5
T 5.0 229 200 | 158 000 | 191 700 132 100 9.5
T 5.0 240 800 | 166 000 | 212 500 146 500 6.0
T 5.0 225 200 | 155 300 | 199 100{ 137 300 5.5
T 5.0 228 000 { 157 200 | 203 200 140 100 8.0
T 5.0 242 600 | 167 300 | 223 900{ 154 400 4.5
Avg 230 900 | 159 200 | 199 500} 137 500 8.0
dRelative to mill rolling, L = Longitudinal, T = Long transverse.
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Table 31 Room Temperature Tensile Propérties of PH 14-8 Mo Cryoworked by Various Methods

) Room fémperature tensile properties
Method of Actual ; ' - : Elongation
cryoworking at | prestrain, Strain rate Ultimate. Yield P inQZ i
-320°F (78°K) C % in./in./minf cm/cm/min|  psi N/cm? psi N/em? (5,08 cm)
Uniaxial tension 9.0 0.050 0.050: 253700 | 174 900 | 200 100 { 138 000 11.5
14.5 . 0.050 - 0.050 324 100 | 223 500 | 321 700 | 221 800 0
9.0 1.5 . 1.5 275 400 | 189 900 | 259 600 | 179 000 4.5
13.0 ] 1.5 1. 1.5 314 900§ 217 100 | 305 200 | 210 400 2.0
Ro11 strained (b) N/A N/A 307 500 | 212 000 {283 000 | 195 100 2.0
High energy rate 3.0 N/A N/A 240 400 | 165 800 | 215 600 | 148 700 11.0
6.0 N/A ' N/A 276 500 | 190 600 {260 000 | 179 300 4.5
2 ongitudinal properties after cryoworking and aging one hour at 900°F (756°K).
bMaterial thickness reduced from 0.050 in. (0.127 cm) to 0.043 in. (0.109 cm).

Compression Tests

Results: Table 32 is a compilationvdf the results of the compression test
series of tests.

Discussion: For strained and aged PH 14-8 Mo, whether strained at -320°F (78°K)
or at room temperature, and for PH 14-8 Mo in the SRH 950 and SRH 1050 condi-
tions, compression and tensile yield strengths are essentially equal. However,
the Bauschinger effect (ref 15) is manifest in the reduced compression yield
strength of the strained and unaged PH 14-8 Mo material. However, the data
indicate that aging, even for short periods at 800°F, provides sufficient

stress relief that the Bauschinger effect is not a problem with strained and
aged PH 14-8 Mo.
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Conclusions

VI. CONCLUSIONS AND RECOMMENDATIONS

The general conclusion that can be drawn from the results of this program
is that PH 14-8 Mo can be cryostrained and aged to strengths above those
achieved by industry standard treatments. Also, at some strengths above the
normal level, the cryostrained and aged PH 14-8 Mo will retain sufficient tough-
ness and corrosion resistance to be considered a useful structural material.

Specific conclusions drawn from the results of this study are:

1

2)

3)

4)

5)

6)

7)

8)

9)

10)

PH 14-8 Mo, PH 15-7 Mo, and 17-7 PH, can be cryostrained and aged
to strengths above 300 000 psi (206 900 N/cm?).

The strengths déveloped by the three alloys through cryostraining
are not significantly affected by the rate of straining.

Cryostrained PH 14-8 Mo can be aged to the same maximum strength
for a given strain level at temperatures between 800°F (700°K) and
950°F (783°K) provided the aging time is adjusted according to
aging temperature. Aging time decreases as aging temperature in-
creases.,

The toughness of cryostrained PH 14-8 Mo, for a strength level,
improves with increasing aging temperature. Therefore, the recom-
mended aging temperature is 950°F (783°K).

Aging cryostrained PH 14-8 Mo at 1000°F (811°K) or 1050°F (866°K)
results in overaging.

The compression yield strength of cryostrained (tension) and unaged
PH 14~8 Mo is markedly reduced due to the Bauschinger effect.

Aging cryostrained PH 14-8 Mo provides sufficient stress relief so
that degradation of the compression yield strength from the
Bauschinger effect is eliminated.

PH 14-8 Mo SRH 950 and PH 14-8 Mo SRH 1050 are less resistant to

corrosion by 3.5% NaC¢ solution than PH 14-8 Mo in the annealed,

cryostrained and aged, or room temperature strained and aged con-
ditions.

PH 14-8 Mo cryostrained at -320°F (78°K) and aged 4 hr at 950°F
(783°K) develops an ultimate tensile strength 20Z higher than
PH 14-8 Mo condition SRH 950, while for the same conditions the
notched to unnotched strength ratios are essentially equivalent
(Ref 10 and Table 27).

PH 14-8 Mo cryostrained 10% at -320°F (78°K) and aged 4 hr at
950°F (783°K) (Table 27) has an ultimate tensile strength to den~
sity ratio of 1.03 x 10% inches (2.62 x 10° cm), while the equiva-
lent value for PH 14-8 Mo condition SRH 950 is 0.88 x 10° inches
(2.24 x 10% cm).
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Recommendations

The data compiled so far indicate that cryostrained and aged PH 14-8 Mo is

a potentially useful structural material. But, before a final determination
can be made other data must be obtained. For that purpose the following recom—
mendations for additional study are made.

140

1

2)

3)

4)

Determine the resistance of cryostrained and aged PH 14-8 Mo to
corrosion by salt air, industrial environment, and appropriate
propellants and pressurants, commonly used in aerospace vehicles,
as well as solvents, and media used in cleaning and fabrication
processes.

Study the effects of cryostraining and aging on the fatigue proper-
ties of PH 14-8 Mo.

Determine the properties of cryostrained and aged PH 14-8 Mo at
cryogenic and elevated temperatures.

Determine K KC and KTH (in appropriate media and enviromments)

Ic?
for cryostrained and aged PH 14-8 Mo.



APPENDIX

TEST RESULTS FOR TASKS VI AND VII

(For Task VIII refer to Tables 27, 28, 29, 30, and 32;
for Tasks II, III, and IV refer to Reference 8.)
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Table 37 Conversions

APPENDIX

To convert from To Multiply by
inch meter 0.0254
inch centimeter 2.54
pound force, ]bf (avoirdupois) | Newton 4.4482216152605
grain 7 - kilogram 0.00006479891
1bf//1'nch2 {psi) Newton/meter?| 6894.7472
1bf//1'nch2 (psi) Newton/cm? 0.68947572
foot 1bf joule 1.3558179
Fahrenheit (temperature) Kelvin K= (5/9) (F + 459.67)
1bm/inch3 gm/cc 27.679905
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Los Angeles, California 90045
Attn: J. G. Wilder

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201
Attn: J. E. Campbell
Ward Simons
R. Runck

Beech Aircraft Corporation
Boulder Facility
Box 631
Boulder, Colorado
Attn: Douglas Pope

Bell Aerosystems, Inc.

Box 1

Buffalo, New York 14205
Attn: T. Reinhardt

Bendix Systems Division

Bendix Corporation

3300 Plymouth Street

Ann Arbor, Michigan
Attn: John M. Brueger

Boeing Company

Space Division

P. 0. Box 868

Seattle, Washington 98124
Attn: C, F. Tiffany

Chemical Propulsion Information Agency
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910
Attn: Tom Reedy

NAS3-12028

Page 15



Distribution List NAS3-12028

Chrysler Corporation

Missile Division

P, 0. Box 2628

Detroit, Michigan
Attn: John Gates

Curtiss-Wright Corporation
Wright Aeronautical Division
Woodridge, New Jersey

Attn: G. Kelley

Northrop Space Laboratories
3401 West Broadway
Hawthorne, California

Attn: Dr. William Howard

Purdue University
Lafayette, Indiana 47907
Attn: Dr. Bruce Reese

Rocket Research Corporation

Willow Road at 116th Street

Redmond, Washington 98052
Attn: F. McCullough, Jr.

TRW Incorporation

TAPCO Division

23555 Euclid Avenue

Cleveland, Ohio 44117
Attn: P, T. Angell

Wright-Patterson Air Force Base, Ohio 45433
Attn: R. E. Headrick, Code MANE

Minnesota Mining and Manufacturing Company
900 Bush Avenue
St. Paul, Minnesota 55106

Attn: H. C. Zeman

Frankford Arsenal
Philadelphia, Pennsylvania 19137
Attn: Carl Carman

Cornell University
Department of Materials Science & Engineering
Ithaca, New York 14850

Attn: H. H. Johnson
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P. 0. Box 969

Livermore, California 94550
Attn: H. Lucas

Brunswick Corporation
Defense Products Division
P. 0. Box 4594
43000 Industrial Avenue
Lincoln, Nebraska

Attn: J. Carter

General Dynamics

P. 0. Box 748

Fort Worth, Texas 76101
Attn: D. E. Westerheide

Cryonetics Corporation
Northwest Industrial Park
Burlington, Mass.,

Attn: J. F, Howlett

Brooks & Perkins

Box 2305

Livonia, Michigan 48151
Attn: John Roszler

Latrobe Steel Corp.
Latrobe, Pennsylvania
Attn: Dan Yates

United States Steel Corporation
1301 First National Bank Bldg.
Denver, Colorado 80202

Attn: Richard Strahl

United States Steel Corporation
525 William Penn Place
Pittsburgh, Penna., 15230
Attn: R. B, Guina
Mgr., Stainless Steel Product Metallurgy

Huntington Alloys Products Co.
Division of International Nickel .
P. 0. Box 22272
Houston; Texas 77027

Attn: Richard Rudolf
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Allvac

Aircraft Avenue

Monroe, North Carolina 28110
Attn: Dave Sims

Crucible Steel Corporation
Division of Research
P, 0. Box 988
Pittsburgh, Penna. 15230
Attn: Ed Dulis, Director of Research

Carpenter Steel

2605 Freewood Drive

P. 0. Box 20020

Dallas, Texas 75220
Attn: J, F. Nelson

Standard Pressed Steel

2701 South Harbor Blvd.

Santa Ana, California
Attn: Bob Lingschied

Kaweckl Berylco Industries, Inc.
P. 0. Box 1462
Reading, Penna. 19603
Attn: Gene Nawrachy
Bill Wenger

Esco Corporation

3940 Grape Street

Denver, Colorado 80207
Attn: Dick Jesser

Kaiser Aluminum & Chemical Corp.
Fabrication and Applied Research
Spokane, Washington 99215

Attn: Dr. Fred MeMoney

Reynolds Metals Company
Fourth & Canal Streets
Richmond, Virginia 23218
Attnt Carson Brooks, Director
Research Technology & Applied Sciences

Aluminum Company of America
P. 0. Box 1012
New Kensington, Penna, 15068
Attn: Larry Mayer
J. G. Kaufman

Page 18



Distribution List NAS3-12028

Armco Steel Corporation

P. 0. Box 600

Middletown, Ohio 45042
Attn: Cameron Perry

Haynes Stellite Company
1020 W. Park Avenue
Kokomo, Indiana 46910
Attn: Earl Jenkins
Jerry Richardson

International Nickel Company

714 West Olympic Blvd.

Los Angeles, California 90017
Attn: Tom Landig

Titanium Metals Corp. of America

195 Quinton Road

West Caldwell, New Jersey 07006
Attn: Gene Erbin

Dow Chemical Company
Building 2030
Midland, Michigan 48640
Attn: Dr. Robert Busk
Mgr., R&D Metal Products

Man Labs, Inc.

21 Erie Street

Cambridge, Massachusetts
Attn: Dr., S. A, Rulin

Chase Brass & Copper Company
1121 East 260 Street
Cleveland, Ohio 44132

Attn: Wwm. Vitantiano

Page 19



